Skip to main content
Log in

Antifungal activity of photo-biosynthesized silver nanoparticles (AgNPs) from organic constituents in orange peel extract against phytopathogenic Macrophomina phaseolina

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The soil-borne fungus Macrophomina phaseolina causes charcoal rot, which is one of the most damaging threats to the faba bean in Egypt. The goal of this work was to investigate the inhibitory effects of silver nanoparticles AgNPs on Modiolula phaseolina in vitro, as well as their effectiveness in reducing the incidence of charcoal rot in greenhouse settings. AgNPs were synthesized using a chemical and biological technique in this work. Aqueous trisodium citrate was used to synthesize chemical-AgNPs. However, biological-AgNPs were synthesized using the active chemical components (hesperidin and ascoebic acid are main products) occurred in orange (Citrus sinensis L.) peel extracts. The as-synthesized AgNPs (chemo-ANPs or bio-AgNPs) were full characterized using UV–Vible spectroscopy and transmission electron microscopy (TEM). Bio-AgNPs with spherical forms were found to have an average diameter of 32-47 nm. The antifungal activity of the aqueous extract of orange peel, chemo- and bio-AgNPs at doses of 0, 10, 25, 50, and 100 ppm was tested in vitro against the most virulent isolate of M. phaseolina (isolate number Mp3). It was demonstrated that the orange peel extract showed no antifungal activity. However chemo-AgNPs showed an inhibiting M. phaseolina (Mp3) radial development by 60.5% at a concentration of 100 ppm. In addition, bio-AgNPs were shown to have potential antifungal efficacy, inhibiting the radial growth of M. phaseolina (Mp3) by 100% at a concentration of 100 ppm. In a greenhouse experiment, faba bean seeds treated with bio-AgNPs significantly reduced the incidence of damping-off and charcoal rot diseases and raised the percent of survival plants under greenhouse conditions and soil infested with M. phaseolina. The use of bio-AgNPs improves the growth of faba bean plants growing in greenhouse conditions. As a result, photo-biosynthesized AgNPs from orange peel extract can be employed as a nano-fungicide and nano-fertilizer for faba bean production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Abdel-Monaim, M. F. (2013). Improvement of biocontol of damping-off and root-rot/wilt of faba bean by salicylic acid and hydrogen peroxide. Microbiology, 41(1), 47–55.

    CAS  Google Scholar 

  • Ahmed, S., Ahmad, S. M., Swami, B. L., & Ikram, S. (2016). Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. Journal of Radiation Research and Applied Sciences, 9(1), 1–7.

    Article  Google Scholar 

  • Attia, Y. A., Mohamed, Y. M. A., & Altalhi, & T.A. (2016a). Photobiosynthesis of metal/graphenenano composites: New materials for water desalination and purification. Desalination and Water Treatment, 57, 26014–26021.

    Article  CAS  Google Scholar 

  • Attia, Y. A., Farag, Y. E., Mohamed, Y. M. A., Hussien, A. T., & Youssef, T. (2016b). Photo-extracellular synthesis of gold nanoparticles using Baker's yeast and their anticancer evaluation against Ehrlich ascites carcinoma cells. New Journal of Chemistry, 40, 9395–9402.

    Article  CAS  Google Scholar 

  • Atwa, M. A. (2016). Induction of resistance against damping off and root rot diseases in faba bean. Arab Universities Journal of Agricultural Sciences, 24, 555–578.

    Article  Google Scholar 

  • Buhroo, A. A., Nisa, G., Asrafuzzaman, S., Prasad, R., Rasheed, R., & Bhattacharyya, A. (2017). Biogenic silver nanoparticles from Trichodesma indicum aqueous leaf extract against Mythimna separata and evaluation of its larvicidal efficacy. Journal of Plant Protection Research, 57, 194–200.

    Article  CAS  Google Scholar 

  • Barnett, H.L. and Hunter, B.B. (1972) Illustrated genera of imperfect Fungi. 3rd Edition, Burgess Publishing Co., Minneapolis, 241 p.

  • Colley-Smith, J. R., & Cooke, R. C. (1971). Survival and germination of fungal sclerotia. Annual Review of Phytopathology, 9, 65–92.

    Article  Google Scholar 

  • Darwesh, O. M., & Elshahawy, I. E. (2021). Silver nanoparticles inactivate sclerotial formation in controlling white rot disease in onion and garlic caused by the soil borne fungus Stromatinia cepivora. European Journal of Plant Pathology, 160, 917–934. https://doi.org/10.1007/s10658-021-02296-7

    Article  CAS  Google Scholar 

  • Elshahawy, I. E., Abouelnasr, H. M., Lashin, S. M., & Darwesh, & O.M. (2018). First report of Pythium aphanidermatum infecting tomato in Egypt and its control using biogenic silver nanoparticles. Journal of Plant Protection Research, 58, 137–151.

    CAS  Google Scholar 

  • Eya’aneMeva, F. et al., (2017). Natural substances for the synthesis of silver nanoparticles against Escherichia coli: The case of Megaphrynium macrostachyum (Marantaceae), Corchorus olitorus (Tiliaceae), Ricinodendron heudelotii (Euphorbiaceae), Gnetumbucholzianum (Gnetaceae), and Ipomoea batatas (convolvulaceae). Journal of nanomaterials, article ID 6834726, 6 pages, 2017. 10.1155/2017/6834726.

  • Gardea-Torresdey, J. L., Gomez, E., Peralta-Videa, J. R., Parsons, J. G., Troiani, H., & Jose-Yacaman, M. (2003). Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir, 19(4), 1357–1361.

    Article  CAS  Google Scholar 

  • Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review. Biology and Fertility of Soils, 35, 219–230.

    Article  CAS  Google Scholar 

  • Huang, J., et al. (2007). Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomumcamphora leaf. Nanotechnology, 18(10), 105–104.

    Google Scholar 

  • Iravani, S., Korbekandi, H., Mirmohammadi, S. V., & Zolfaghari, B. (2014). Synthesis of silver nanoparticles: Chemical, physical and biological methods. Research in Pharmaceutical Sciences, 9, 385–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jo, Y. K., Kim, B. H., & Jung, G. (2009). Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Disease, 93, 1037–1043.

    Article  CAS  Google Scholar 

  • Jyoti, K., Baunthiyal, M., & Singh, A. (2016). Characterization of silver nanoparticles synthesized using Urticadioica Linn. Leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Sciences, 9(3),217-227.

  • Karimi, E., & Sadeghi, A. (2019). Toxicity effect of silver nanoparticles on two plant growth promoting Streptomyces spp. strains, phytopathogenic fungi fusarium solani and phytopathogenic oomycetes Pythium aphanidermatum and Pythium ultimum. Modares. Journal of Biotechnology, 10(1), 23–27.

    Google Scholar 

  • Khalifa, N.A.M. (2016). Pathological studies on controlling wilt and root-rot diseases on faba bean plants in Egypt and Sudan. Ph. D Thesis Institute of African Research and Studies, Cairo University, 135p.

  • Kim, J.S., Kuk, E., Yu, K.N., Kim, J.H., Park, S.J., Lee, H.J., Kim, S.H., Park, Y.K., Park, Y.H., Hwang, C.Y., Kim,Y.K., Lee, Y.S., Jeong, D.H., &Cho, M.H. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine, 3(1), 95-101.

  • Kim, S. W., Jung, J. H., Lamsal, K., Kim, Y. S., Min, J. S., & Lee, Y. S. (2012). Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology, 40, 53–58.

    Article  CAS  Google Scholar 

  • Kumari, R., Khan, M. R., Bagri, G. K., Bagri, D. K., & Bagdi, D. L. (2017). Soil application of different species of Trichoderma for the management of charcoal rot of faba bean caused by Macrophomina phaseolina. Journal of Pharmacognosy and Phytochemistry, 6(6), 1483–1148.

    CAS  Google Scholar 

  • Leon, E. R., Palomares, R. I., Navarro, R. E., Tanori, R. H. U. J., Palomares, C. I., & Maldonado, A. (2013). Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts). Nanoscale Research Letters, 3, 1–9.

    Google Scholar 

  • Li, S., et al. (2007). Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chemistry, 9(8), 852.

    Article  CAS  Google Scholar 

  • Makarov, V. V., et al. (2014). Green nanotechnologies: Synthesis of metal nanoparticles using plants. ActaNaturae, 6(1), 35–44.

    CAS  Google Scholar 

  • Mazen, M. M., El-Batanony, N. H., Abd El-Monium, M. M., & Massoud, O. N. (2008). Cultural filtrate of Rhizobium spp. and arbuscular mycorrhiza are potential biological control agents against root rot fungal diseases of faba bean. Global Journal of Biotechnology & Biochemistry, 3(1), 32–41.

    Google Scholar 

  • Meena, R.S., Kumar, S., Datta, R., Lal, R., Vijayakumar, V., Brtnicky, M., Sharma, M.P., Yadav, G.S., Jhariya, M.K., & Jangir, C. K. (2020). Impact of agrochemicals on soil microbiota and management: A review. Land, 9(2), 34; 10.3390/land9020034.

  • Mohamed, H.A.R. (1982). Major disease problems of faba beans in Egypt. In: Hawtin G., Webb C. (eds) Faba bean improvement. World crops: Production, utilization, and description, vol 6. Publisher: Springer.

  • Mohammed, A. E. (2015). Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles mediated by Eucalyptus camaldulensis leaf extract. Asian Pacific Journal of Tropical Biomedicine, 5(5), 382–386.

    Article  CAS  Google Scholar 

  • Min, J. S., Kim, K. S., Kim, S. W., Jung, J. H., Lamsal, K., Kim, S. B., Jung, M., & Lee, Y. S. (2009). Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. The Plant Pathology Journal, 25, 376–380.

    Article  CAS  Google Scholar 

  • Murdock, R. C., Braydich-Stolle, L., Schrand, A. M., Schlager, J. J., & Hussain, S. M. (2008). Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicological Sciences, 101(2), 239–253.

    Article  CAS  Google Scholar 

  • Natsuki, J., Natsuki, T., & Hashimoto, Y. (2015). A review of silver nanoparticles: Synthesis methods, properties and applications. International Journal of Materials Science and Applications, 4(5), 325.

    Article  CAS  Google Scholar 

  • Nahvi, I., Belkahla, S., Asiri, S. M., & Rehman, S. (2021). Overview and prospectus of algal biogenesis of nanoparticles. In M. A. Ansari & S. Rehman (Eds.), Microbial nanotechnology: Green synthesis and applications. Springer.

    Google Scholar 

  • Park, H. J., Kim, S. H., Kim, H. J., & Choi, S. H. (2006). A new composition of nanosized silica-silver for control of various plant diseases. The Plant Pathology Journal, 22, 295–302.

    Article  Google Scholar 

  • Pohlit, V. F., Adrian, M., Alex, R. R., Edson, B. L. P., & Noberto, L. P. (2011). Plant extracts, isolated phytochemicals, and plant-derived agents which are lethal to arthropod vectors of human tropical diseases- a review. Planta Medica, 77(6), 618–630.

    Article  CAS  Google Scholar 

  • Pulit-Prociak, J., & Banach, M. (2016). Silver nanoparticles - a material of the future...?.Open. Chemistry, 14(1), 76–91.

    CAS  Google Scholar 

  • Qureshi, A., Blaisi, N. I., Abbas, A. A. O., Khan, N. A., & Rehman, S. (2021). Prospectus and development of microbes mediated synthesis of nanoparticles. In M. A. Ansari & S. Rehman (Eds.), Microbial nanotechnology: Green synthesis and applications. Springer.

    Google Scholar 

  • Rehman, S., Ansari, M. A., Al-Dossary, H. A., Fatima, Z., Hameed, S., Ahmad, W., & Ali, A. (2021). Chapter 17 - current perspectives on Mycosynthesis of nanoparticles and their biomedical application. In A. T. Azar (Ed.), Modeling and control of drug delivery systems (pp. 301–311). Elsevier.

    Chapter  Google Scholar 

  • Rehman, S., Jermy, R., Asiri, S. M., Shah, M. A., Farooq, R., Ravinayagam, V., Ansari, M. A., Alsalem, Z., Al Jindan, R., Reshi, Z., & Khan, F. A. (2020). Using Fomitopsis pinicola for bioinspired synthesis of titanium dioxide and silver nanoparticles, targeting biomedical applications. RSC Advances, 10, 32137–32147.

    Article  CAS  Google Scholar 

  • Rafique, M., Sadaf, I., Rafique, M. S., & Tahir, M. B. (2017). A review on green synthesis of silver nanoparticles and their applications. Artificial Cells, Nanomedicine, and Biotechnology, 45(7), 1272–1291.

    Article  CAS  Google Scholar 

  • Salata OV (2004) Applications of nanoparticles in biology and medicine”. Journal of Nanobiotechnology, 2, 3 (2004). 10.1186/1477-3155-2-3.

  • Sapsford, K. E., Tyner, K. M., Dair, B. J., Deschamps, J. R., & Medintz, I. L. (2011). Analyzing nanomaterial bioconjugates: A review of current and emerging purification and characterization techniques. Analytical Chemistry, 83(12), 4453–4488.

    Article  CAS  Google Scholar 

  • Sekhon, B. S. (2014). Nanotechnology in Agri-food production: An overview. Nanotechnology, Science and Applications, 7, 31–53.

    Article  Google Scholar 

  • Smith, G. S., & Wyllie, T. D. (1999). Charcoal rot. In G. L. Hartman, J. B. Sinclair, & J. C. Rupe (Eds.), Compendium of soybean disease (4th ed., pp. 29–31). American Phytopathological Society.

    Google Scholar 

  • Thiruvengadam, M., Rajakumar, G., & Chung, M. (2018). Nanotechnology: Current uses and future applications in the food industry. Biotech, 8(1), 74. https://doi.org/10.1007/s13205-018-1104-7

    Article  Google Scholar 

  • Tsuji, M. (2017). Microwave-assisted synthesis of metallic nanomaterials in liquid phase. ChemistrySelect, 2, 805–819.

    Article  Google Scholar 

  • Ulug, B., HalukTurkdemir, M., Cicek, A., & Mete, A. (2015). Role of irradiation in the green synthesis of silver nanoparticles mediated by fig (Ficuscarica) leaf extract. SpectrochimicaActa Part A: Molecular and Biomolecular, 135, 153–161.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Research Center (Egypt) for providing the facilities.

Authorship responsibility and contribution

Yasser M. A. Mohamed: preparation and characterization of orange peel extract and silver nanoparticles, analysis the data and sharing in writing the manuscript.

Ibrahim E. Elshahawy: Achieved the in vitro inhibitory effect, greenhouse experiments, analysis the data and sharing in writing the manuscript.

Availability of data and materials

The authors confirm that the data supporting the findings of this study are available within the article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yasser Mahmoud A. Mohamed or Ibrahim E. Elshahawy.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Ethical approval

This type of study formal consent is not required.

Statement on the welfare of animals

This report does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

We, (the corresponding authors) hereby declare that we participated in this study and development of this article.

Consent to publish

We, the corresponding authors have read final version of this article and give our consent to be published.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, Y.M.A., Elshahawy, I.E. Antifungal activity of photo-biosynthesized silver nanoparticles (AgNPs) from organic constituents in orange peel extract against phytopathogenic Macrophomina phaseolina. Eur J Plant Pathol 162, 725–738 (2022). https://doi.org/10.1007/s10658-021-02434-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-021-02434-1

Keywords

Navigation