Skip to main content
Log in

To address accuracy and precision using methods from analytical chemistry and computational physics

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this work the pesticides were determined by liquid chromatography–mass spectrometry (LC-MS). In present study the occurrence of imidacloprid in 343 samples of oranges, tangerines, date plum, and watermelons from Valencian Community (Spain) has been investigated. The nine additional pesticides were chosen as they have been recommended for orchard treatment together with imidacloprid. The Mulliken population analysis has been applied to present the charge distribution in imidacloprid. Partitioned energy terms and the virial ratios have been calculated for certain molecules entering in interaction. A new technique based on the comparison of the decomposed total energy terms at various configurations is demonstrated in this work. The interaction ability could be established correctly in the studied case. An attempt is also made in this work to address accuracy and precision. These quantities are well-known in experimental measurements. In case precise theoretical description is achieved for the contributing monomers and also for the interacting complex structure some properties of this latter system can be predicted to quite a good accuracy. Based on simple hypothetical considerations we estimate the impact of applying computations on reducing the amount of analytical work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aguera, A., Lopez, S., Fernandez-Alba, A. R., Contreras, M., Crespo, J., & Piedra, L. (2004). One-year routine application of a new method based on liquid chromatography–tandem mass spectrometry to the analysis of 16 multiclass pesticides in vegetable samples. Journal of Chromatography A, 1045, 125–135.

    Article  CAS  Google Scholar 

  • Ahmed, F. E. (2001). Analyses of pesticides and their metabolites in foods and drinks. Trends in Analytical Chemistry, 20, 649–661.

    Article  CAS  Google Scholar 

  • Bandyopadhyay, P., Gordon, M. S., Mennucci, B., & Tomasi, J. (2002). An integrated effective fragment-polarizable continuum approach to salvation: Theory and application to glycine. Journal of Chemical Physics, 116, 5023–5032.

    Article  CAS  Google Scholar 

  • Bashford, D., & Case, D. A. (2000). Generalized born models of macromolecular salvation effects. Annual Review Physical Chemistry, 51, 129–152.

    Article  CAS  Google Scholar 

  • Bayer, A. G. (2001). Expert overview – Bayer with reference to C. Cox, Insecticide Factsheet – Imidacloprid, Northwest Coalition for Alternatives to Pesticides (NCAP). Journal of Pesticide Reform, 21/1, 15–21.

    Google Scholar 

  • Blasco, C., Fernández, M., Picó, Y., Font, G., & Mañes, J. (2002a). Simultaneous determination of imidacloprid, carbendazim, methiocarb and hexythiazox in peaches and nectarines by liquid chromatography–mass spectrometry. Analytica Chimica Acta, 461, 109–116.

    Article  CAS  Google Scholar 

  • Blasco, C., Font, G., & Picó, Y. (2002b). Comparison of microextraction procedures to determine pesticides in oranges by liquid chromatography–mass spectrometry. Journal of Chromatography A, 970, 201–212.

    Article  CAS  Google Scholar 

  • Blasco, C., Font, G., & Pico, Y. (2004). Multiple-stage mass spectrometric analysis of six pesticides in oranges by liquid chromatography–atmospheric pressure chemical ionization–ion trap mass spectrometry. Journal of Chromatography A, 1043, 231–238.

    Article  CAS  Google Scholar 

  • Boys, S. F., & Bernardi, F. (1970). The calculation of small molecular interactions by the differences of separate total energies. Molecular Physics, 9, 553–566.

    Article  Google Scholar 

  • Chaudhari, A., Sahu, P. K., & Lee, S-L. (2004). Many-body interaction in glycine–(water)3 complex using density functional theory method. Journal of Chemical Physics, 120, 170–174.

    Article  CAS  Google Scholar 

  • Cox, C. (2001). Insecticide Factsheet – Imidacloprid. Journal of Pesticide Reform, 21/1, 15–21.

    Google Scholar 

  • Cybulski, S. M., & Seversen, C. E. (2005). Critical examination of the supermolecule density functional theory calculations of intermolecular interactions. Journal of Chemical Physics, 122, 014117 (9 pages).

    Article  CAS  Google Scholar 

  • Dill, K. A., Truskett, T. M., Vlachy, V., & Hribar-Lee, B. (2005). Modeling water, the hydrophobic effect, and ion solvation. Annual Review Biophysical Biomolecular Structure, 34, 173–199.

    Article  CAS  Google Scholar 

  • Ensing, B., Meijer, E. J., Blöchl, P. E., & Baerends, E. J. (2001). Solvation effects on the SN2 reaction between CH3Cl and Cl in water. Journal of Physical Chemistry A, 105, 3300–3310.

    Article  CAS  Google Scholar 

  • Fernández-Alba, A. R., Tejedor, A., Agüera, A., Contreras, M., & Garrido, J. (2000). Determination of imidacloprid and benzimidazole residues in fruits and vegetables by liquid chromatography–mass spectrometry after ethyl acetate multiresidue extraction. The Journal of AOAC International, 83, 748–755.

    Google Scholar 

  • Hogendoorn, E., & van Zoonen, P. (2000). Recent and future development of liquid chromatography in pesticide trace analysis. Journal of Chromatography A, 892, 435–453.

    Article  CAS  Google Scholar 

  • Ikeda, A., Yokogawa, D., Sato, H., & Sakaki, S. (2006). Solvation effect on resonance structure: Extracting valence bond-like character from molecular orbitals. Chemical Physics Letters, 424, 449–452.

    Article  CAS  Google Scholar 

  • Klein, J., & Alder, L. (2003). Applicability of gradient liquid chromatography with tandem mass spectrometry to the simultaneous screening for about 100 pesticides in crops. The Journal of AOAC International, 86, 1015–1037.

    CAS  Google Scholar 

  • Kozmutza, C., & Tfirst, E. (1998). A study of weakly interacting systems in localized representation, including the many-body effect. Advances in Quantum Chemistry, 31, 231–250.

    Article  CAS  Google Scholar 

  • Kozmutza, C., & Tfirst, E. (2002). Ab initio program for treatment of related systems. The character of the hydrogen bond. In Recent research developments in quantum chemistry (Vol. 3, pp. 169–209). Trivandrum, India: Transworld Research Network.

  • Mañes, J., Font, G., & Pico, Y. (1993). Evaluation of a solid-phase extraction system for determining pesticide-residues in milk. Journal of Chromatography, 642, 195–204.

    Article  Google Scholar 

  • Mrázek, J., & Burda, J. V. (2006). Can the pH value of water solutions be estimated by quantum chemical calculations of small water clusters? Journal of Chemical Physics, 125, 194518 (14 pages).

    Article  CAS  Google Scholar 

  • Nuñez, O., Moyano, E., & Galceran, M. T. (2005). LC-MS/MS analysis of organic toxics in food. Trends in Analytical Chemistry, 24, 783–789.

    Article  CAS  Google Scholar 

  • Ozaki, T., & Kirio, H. (2004). Variationally optimized basis orbitals for biological molecules. Journal of Chemical Physics, 121, 10879–10888.

    Article  CAS  Google Scholar 

  • Pico, Y., Blasco, C., & Font, G. (2004). Environmental and food applications of LC–tandem mass spectrometry in pesticide-residue analysis: An overview. Mass Spectrometry Review, 23, 45–85.

    Article  CAS  Google Scholar 

  • Picó, Y., Font, G., Moltó, J. C., & Mañes, J. (2000). Pesticide residue determination in fruit and vegetables by liquid chromatography–mass spectrometry. Journal of Chromatography A, 882, 153–173.

    Article  Google Scholar 

  • Pous, X., Ruiz, M. J., Picó, Y., & Font, G. (2001). Determination of imidacloprid, metalaxyl, myclobutanil, profam and thiabendazole in fruit and vegetables by liquid chromatography–atmospheric pressure chemical ionization–mass spectrometry. Fresenius Journal of Analytical Chemistry, 371, 182–189.

    Article  CAS  Google Scholar 

  • Renwick, A. G., Flynn, A., Fletcher, R. J., Müller, D. J. G., Tuijtelaars, S., & Verhagen, H. (2004). Risk–benefit analysis of micronutrients. Food and Chemical Toxicology, 42, 1903–1922.

    Article  CAS  Google Scholar 

  • Scheringen, M., Böschen, S., & Hungerbühler, K. (2006). Will we know more ore less about chemical risks under REACH? CHIMIA International Journal for Chemistry, 8, 699–706.

    Article  CAS  Google Scholar 

  • Tomizawa, M., Zhang, N., Durkin, K. A., Olmstead, M. M., & Casida, J. E. (2003). The neonicotinoid electronegative pharmacophore plays the crucial role in the high affinity and selectivity for the Drosophila nicotinic receptor: an anomaly for the Nicotinoid Cation-π Interaction Model. Biochemistry, 42, 7819–7827.

    Article  CAS  Google Scholar 

  • Torres, C. M., Picó, Y., Marin, R., & Mañes, J. (1997). Evaluation of organophosphorus pesticide residues in citrus fruits from the Valencian Community (Spain). Journal of AOAC International, 80, 1122–1128.

    CAS  Google Scholar 

  • van Duijneveldt, F. B., van Duijneveldt-van de Rijdt, J. G. C. M., & van Lenthe, J. H. (1994). State of the art in counterpoise theory. Chemical Review, 94, 1873–1885.

    Article  Google Scholar 

  • van Lenthe, J. H., van Duijneveldt-van de Rijdt, J. G. C. M., & van Duijneveldt, F. B. (1987). Weakly bonded systems. In K. Lawley (Ed.) Ab initio methods in quantum chemistry, part II, Advances in Chemical Physics, 69, 521–566.

  • Zaghi, C., Cecchetti, G., Fontana, J., & Conti, M. E. (2005). Science and precaution in the risk analysis of chemicals. International Journal of Risk Assessment and Management, 15, 271–285.

    Article  Google Scholar 

  • Zhanpeisov, N. U., & Leszenczynski, J. (1998). Specific solvation effects on structures and properties of isocytosine–cytosine complexes: a theoretical ab initio study. Journal of Physical Chemistry B, 102, 9109–9118.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Kozmutza.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

DOC (30.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozmutza, C., Picó, Y. To address accuracy and precision using methods from analytical chemistry and computational physics. Environ Monit Assess 151, 59–75 (2009). https://doi.org/10.1007/s10661-008-0249-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0249-y

Keywords

Navigation