Skip to main content

Advertisement

Log in

Altitudinal variation of soil organic carbon stocks in temperate forests of Kashmir Himalayas, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil organic carbon stocks were measured at three depths (0–10, 10–20, and 20–30 cm) in seven altitudes dominated by different forest types viz. Populus deltoides, 1550–1800 m; Juglans regia, 1800–2000 m; Cedrus deodara, 2050–2300 m; Pinus wallichiana, 2000–2300 m; mixed type, 2200–2400 m; Abies pindrow, 2300–2800 m; and Betula utilis, 2800–3200 m in temperate mountains of Kashmir Himalayas. The mean range of soil organic carbon (SOC) stocks varied from 39.07 to 91.39 Mg C ha−1 in J. regia and B. utilis forests at 0–30 cm depth, respectively. Among the forest types, the lowest mean range of SOC at three depths (0–10, 10–20, and 20–30 cm) was observed in J. regia (18.55, 11.31, and 8.91 Mg C ha−1, respectively) forest type, and the highest was observed in B. utilis (54.10, 21.68, and 15.60 Mg C ha−1, respectively) forest type. SOC stocks showed significantly (R 2 = 0.67, P = 0.001) an increasing trend with increase in altitude. On average, the percentages of SOC at 0–10-, 10–20-, and 20–30-cm depths were 53.2, 26.5, and 20.3 %, respectively. Bulk density increased significantly with increase in soil depth and decreased with increase in altitude. Our results suggest that SOC stocks in temperate forests of Kashmir Himalaya vary greatly with forest type and altitude. The present study reveals that SOC stocks increased with increase in altitude at high mountainous regions. Climate change in these high mountainous regions will alter the carbon sequestration potential, which would affect the global carbon cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baishya, R., & Barik, S. K. (2011). Estimation of tree biomass, carbon pool and net primary production of an old growth Pinus kesiya Royle ex. Gordon forest in north-eastern India. Annals of Forest Science, 68, 727–736.

    Article  Google Scholar 

  • Banerjee, S. P., Mathur, K. C., & Sharma, S. D. (1990). Soils of south Kheri forests of Uttar Pradesh. Indian Forester, 116(6), 479–486.

    Google Scholar 

  • Baritz, R., Seufert, G., Montanarella, L., & Ranst, E. V. (2010). Carbon concentration and stocks in forest soils of Europe. Forest Ecology and Management, 260, 262–277.

    Article  Google Scholar 

  • Batjes, N. H. (1996). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47, 151–163.

    Article  CAS  Google Scholar 

  • Biswas, R. (1985). Classification of some typical soils from Dadra and Nagar Haveli. Journal of Indian Society of Soil Science, 33, 945–947.

    Google Scholar 

  • Blair, G. J., Lefroy, R. D. B., & Lisle, L. (1995). Soil carbon fractions based on their degree of oxidation and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 46, 1459–1466.

    Article  Google Scholar 

  • Charan, G., Bharti, V. K., Jadhav, S. E., Kumar, S., Angchok, D., Acharya, S., Kumar, P., & Shrivastava, R. B. (2012). Altitudinal variations in soil carbon storage and distribution patterns in cold desert high altitude microclimate of India. African Journal of Agricultural Research, 7(47), 6313–6319.

    Google Scholar 

  • Chhabra, A., Palria, S., & Dadhwal, P. K. (2003). Soil organic pool in Indian forests. Forest Ecology and Management, 173, 187–199.

    Article  Google Scholar 

  • Compton, J. E., Boone, R. D., Motzkin, G., & Foster, D. R. (1998). Soil carbon and nitrogen in a pine-oak sand plain in central Massachusetts: role of vegetation and land use history. Oecologia, 116, 536–542.

    Article  Google Scholar 

  • Conant, R. T., Klopatek, J. M., Malin, R. C., & Klopatek, C. C. (1998). Carbon pools and fluxes along an environmental gradient in Northern Arizona. Biogeochemistry, 43, 43–61.

    Article  Google Scholar 

  • Dadhwal, V. K., Pandya, N., & Vora, A. B. (1998). Carbon cycle for Indian forest ecosystems—a preliminary estimate, global change studies, scientific results from ISRO geosphere-biosphere programme, India (pp. 411–429). Bangalore: ISRO.

    Google Scholar 

  • Dar, J. A., & Sundarapandian, S. M. (2013). Soil organic carbon stock assessment in two temperate forest types of western Himalaya of Jammu and Kashmir, India. Forest Research, 3, 1. doi:10.4172/2168-9776.1000114.

    Google Scholar 

  • Davidson, E. A., & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165–173.

    Article  CAS  Google Scholar 

  • De Vries, W., Reinds, G. J., Posch, M., Sanz, M., Krause, G., Calatayud, V., Dupouey, J., Sterba, H., Gundersen, P., Voogd, J., & Vel, E. (2003). Intensive monitoring of forest ecosystems in Europe (p. 163). Brussels: 2003 Technical report in EC, UN/ECE.

    Google Scholar 

  • deVos, B., Lettens, S., Muys, B., & Deckers, J. A. (2007). Walkley–Black analysis of forest soil organic carbon: recovery, limitations and uncertainty. Soil Use and Management, 23, 221–229.

    Article  Google Scholar 

  • Diaz-Pines, E., Rubio, A., Miegroet, H. V., Montes, F., & Benito, M. (2011). Does tree species composition control soil organic carbon pools in Mediterranean mountain forests. Forest Ecology and Management, 262, 1895–1904.

    Article  Google Scholar 

  • Dixon, R. K., Brown, S., Houghton, R. A., Solomon, A. M., Trexler, M. C., & Wisniewski, J. (1994). Carbon pools and flux of global forest ecosystems. Science, 263, 185–190.

    Article  CAS  Google Scholar 

  • Dorfer, C., Kuhn, P., Baumann, F., He, J. S., & Scholten, T. (2013). Soil organic pools and stocks in permafrost-affected soils on the Tibetan Plateau. PLoS ONE, 8(2), e57024. doi:10.1371/journal.pone.0057024.

    Article  Google Scholar 

  • F.S.I. (1996). Volume equations for forests of India, Nepal and Bhutan. Forest Survey of India, Ministry of Environment and Forests, Govt. of India.

  • F.S.I. (2011). State of forest report, Forest Survey of India, Dehradun India.

  • Fahey, T. J., Siccama, T. G., Driscoll, C. T., Likens, G. E., Campbell, J., Johnson, C. E., Battles, J. J., Aber, J. D., Cole, J. J., Fisk, M. C., Groffman, P. M., Hamburg, S. P., Holmes, R. T., Schwarz, P. A., & Yanai, R. D. (2005). The biogeochemistry of carbon at Hubbard Brook. Biogeochemistry, 75, 109–176.

    Article  CAS  Google Scholar 

  • Fang, J. Y., Liu, G. H., & Xu, S. L. (1996). Soil carbon pool in China and its global significance. Journal of Environmental Science (China), 8, 249–254.

    CAS  Google Scholar 

  • Garten, C. T., & Hanson, P. J. (2006). Measured forest soil C stocks and estimated turnover times along an elevational gradient. Geoderma, 136, 342–352.

    Article  CAS  Google Scholar 

  • Goodale, C. L., Apps, M. J., Birdsey, R. A., Field, C. B., Heath, L. S., Houghton, R. A., Jenkins, J. C., Kohlmaier, G. H., Kurz, W., Liu, S., Nabuurs, G. J., Nillson, S., & Shvidenko, A. Z. (2002). Forest carbon sinks in the Northern Hemisphere. Ecological Applications, 12, 891–899.

  • Gupta, M. K., & Sharma, S. D. (2011). Sequestered carbon: organic carbon pool in the soils under different forest covers and land uses in Garhwal Himalaya region. International Journal of Agriculture and Forestry, 1(1), 14–20.

    Article  Google Scholar 

  • Gupta, M. K., & Sharma, S. D. (2013). Sequestered organic carbon status in the soils under grassland in Uttarakhand State, India. Applied Ecology and Environmental Sciences, 1(1), 7–9.

    Article  Google Scholar 

  • Gupta, M. K., & Singh, R. P. (1990). Studies on some physical properties of soils under different forest covers and land-uses in Himachal Pradesh. Van Vigyan, 28(3), 86–93.

    Google Scholar 

  • Hanawalt, R. B., & Whittaker, R. H. (1976). Altitudinally coordinated patterns of soils and vegetation in the San Jacinto Mountains, California. Soil Science, 121(2), 114–124.

    Article  Google Scholar 

  • Hoffmann, U., Hoffmann, T., Jurasinski, G., Glatzel, S., & Kuhn, N. J. (2014). Assessing the spatial variability of soil organic carbon stocks in an alpine setting (Grindelwald, Swiss Alps). Geoderma, 232–234, 270–283.

    Article  Google Scholar 

  • I.P.C.C. (2000). Land use, land-use change and forestry. IPCC Special Report. United Kingdom: Cambridge University Press.

    Google Scholar 

  • IPCC. (2007). Intergovernmental panel on climate change, fourth assessment report (AR4), synthesis report, summary for policy makers (pp. 1–13). Geneva: IPCC.

    Google Scholar 

  • Javid, A. D. (2014). Carbon stock assessment in temperate forests of Kashmir Himalaya, India. Ph.D. thesis, Pondicherry University.

  • Jiang, P. K., & Xu, Q. F. (2006). Abundance and dynamics of soil liable carbon pools under different forest types of forest vegetation. Pedosphere, 16, 182–188.

    Google Scholar 

  • Jobbágy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil carbon and its relation to climate and vegetation. Ecological Applications, 10, 423–436.

    Article  Google Scholar 

  • Johnson, D. W., & Curtis, P. S. (2001). Effects of forest management on soil C and N storage: a meta-analysis. Forest Ecology and Management, 140, 227–238.

    Article  Google Scholar 

  • Johnston, C. A., Groffman, P., Breshears, D. D., Cardon, Z. G., Currie, W., Emanuel, W., Gaudinski, J., Jackson, B. R., Lajtha, K., Nadelhoffer, K., Nelson, D., Post, W. M., Retallack, G., & Wielopolski, L. (2004). Carbon cycling in soil. Frontiers in Ecology and Environment, 2(10), 522–528.

    Article  Google Scholar 

  • Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623–1627.

    Article  CAS  Google Scholar 

  • Lal, R. (2005). Forest soils and carbon sequestration. Forest Ecology and Management, 220, 242–258.

    Article  Google Scholar 

  • Latte, N., Colinet, G., Fayolle, A., Lejeume, P., Hebert, J., Claessens, H., & Bauwens, S. (2013). Description of a new procedure to estimate the carbon stocks of all forest pools and impact assessment of methodological choices on the estimates. European Journal of Forest Research, 132, 565–577. doi:10.1007/s10342-0701-6.

    Article  Google Scholar 

  • Leirós, M. C., Trasar-Cepeda, C., Seosane, S., & Gil-Sotres, F. (1999). Dependence of mineralization of soil organic matter on temperature and moisture. Soil Biology and Biochemistry, 31, 327–335.

    Article  Google Scholar 

  • Li, X., & Han, S. (2008). Preservation of broadleaf species in Korean pine (Pinus koraiensis) plantations affects soil properties, carbon storage, biomass allocation, and available nitrogen storage. Canadian Journal of Forest Research, 38, 2227–2235.

    Article  CAS  Google Scholar 

  • Li, P., Wang, Q., Endo, T., Zhao, X., & Kakubari, Y. (2010). Soil organic carbon stock is closely related to aboveground vegetation properties in cold-temperate mountainous forests. Geoderma, 154, 407–415.

    Article  CAS  Google Scholar 

  • Liski, J. (1995). Variation in soil organic carbon and thickness of soil horizons within a boreal forest stand-effect of trees and implications for sampling. Silva Fennica, 29, 255–266.

    Article  Google Scholar 

  • Mahapatra, S. K., Walia, C. S., Sindhu, G. S., Rana, K. P. C., & Lal, T. (2000). Characterization and classification of the soils of different physiographic units in the sub-humid ecosystem of Kashmir region. Journal of Indian Soil Science, 48(3), 572–577.

    Google Scholar 

  • Manhas, R. K., Negi, J. D. S., Kumar, R., & Chauhan, P. S. (2006). Temporal assessment of growing stock, biomass and carbon stock of Indian forests. Climate Change, 74, 191–221.

    Article  CAS  Google Scholar 

  • Matus, F., Rumpel, C., Neculman, R., Panichini, M., & Mora, M. L. (2014). Soil carbon storage and stabilization in andic soils: a review. Catena, 120, 102–110.

    Article  CAS  Google Scholar 

  • McFarlane, K. J., Torn, M. S., Hanson, P. J., Porras, R. C., Swanston, C. W., Callaham, M. A., Jr., & Guilderson, T. P. (2013). Comparison of soil organic matter dynamics at five temperate deciduous forests with physical fractionation and radiocarbon measurements. Biogeochemistry, 112, 457–476.

    Article  CAS  Google Scholar 

  • Nautiyal, S., Rajan, K. S., & Shibasaki, R. (2005). Interaction of biodiversity and economic welfare—a case study from the Himalayas of India. International Journal Ecology and Environmental Informatics, 6, 111–119.

    Article  Google Scholar 

  • Negi, J. D. S., Manhas, R. K., & Chauhan, P. S. (2003). Carbon allocation in different components of some tree species of India: a new approach for carbon estimation. Current Science, 85(11), 1528–1531.

    CAS  Google Scholar 

  • Ortiz, C. A., Liski, J., Gardenas, A. I., Lehtonen, A., Lundblad, M., Stendahl, J., Argen, G. I., & Karltun, E. (2013). Soil organic carbon stock changes in Swedish forest soils—a comparison of uncertainties and their sources through a national inventory and two simulation models. Ecological Modelling, 251, 221–231.

    Article  CAS  Google Scholar 

  • Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., Mcguire, A. D., Piao, S., Rautiainen, A., Sitch, S., & Hayes, D. (2011). A large and persistent carbon sinks in the world’s forests. Science, 333, 988–993.

    Article  CAS  Google Scholar 

  • Paul, E. A., Follet, R. F., Leavitt, S. W., Halvorson, A., Peterson, G. A., & Lyon, D. J. (1997). Radiocarbon dating for determination of soil organic pool sizes and dynamics. American Journal Soil Science Society, 61, 1058–1067.

    Article  CAS  Google Scholar 

  • Pearson, T., Walker, S., & Brown, S. (2005). Sourcebook for land use, land-use change and forestry (p. 35). USA: Projects Winrock International.

    Google Scholar 

  • Piao, S., Fang, J., & Ciais, P. (2009). The carbon balance of terrestrial ecosystems in China. Nature, 458, 1009–1013.

    Article  CAS  Google Scholar 

  • Powlson, D. S., Whitemore, A. P., & Goulding, K. W. T. (2011). Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. European Journal Soil Science, 62, 42–55.

    Article  CAS  Google Scholar 

  • Raich, J. W., & Schlesinger, W. H. (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44B, 81–99.

    Article  CAS  Google Scholar 

  • Ravindranath, N.H., & Ostwald, M. (2008). Carbon inventory methods: handbook for greenhouse gas inventory, carbon mitigation and round wood production projects. Netherlands: Springer.

  • Ravindranath, N. H., Somashekhar, B. S., & Gadgil, M. (1997). Carbon flows in Indian forests. Climate Change, 35, 297–320.

    Article  CAS  Google Scholar 

  • Sariyildiz, T. (2008). Effects of gap-size classes on long-term litter decomposition rates of beech, oak and chestnut species at high elevations in northeast Turkey. Ecosystems, 11, 841–853.

    Article  Google Scholar 

  • Schindlbacher, A., De Gonzalo, C., Diaz-Pines, E., Gorria, P., Mathews, B., Inclan, R., Zechmeister-Boltenstern, S., Rubio, A., & Jandl, R. (2010). Temperature sensitivity of forest soil organic matter decomposition along two elevation gradients. Journal of Geophysical Research, Biogeosciences, 115, G03018.

    Google Scholar 

  • Schulp, C. J. E., Nabuurs, G. J., Verburg, P. H., & de Waal, R. W. (2008). Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories. Forest Ecology and Management, 256, 482–490.

    Article  Google Scholar 

  • Sharma, C. M., Gairola, S., Ghildiyal, S. K., & Sarvesh, S. (2010). Physical properties of soils in relation to forest composition in moist temperate valley slopes of the central western Himalaya. Journal Forest Science, 26(2), 117–129.

    Google Scholar 

  • Sharma, C. M., Gairola, S., Baduni, N. P., Ghildiyal, S. K., & Suyal, S. (2011). Variation in carbon stocks on different slope aspects in seven major forest types of temperate region of Garhwal Himalaya, India. Journal of Bioscience, 36(4), 701–708.

    Article  CAS  Google Scholar 

  • Sheikh, M. A., Kumar, M., & Bussmann, R. W. (2009). Altitude variation in soil organic carbon stock in coniferous subtropical and broad leaf temperate forests in Garhwal Himalaya. Carbon Balance Management, 4, 1–6. doi:10.1186/1750-0680-4-6.

    Article  CAS  Google Scholar 

  • Sheikh, M. A., Kumar, S., & Kumar, M. (2012). Above and belowground organic carbon stocks in a sub-tropical Pinus roxburghii Sargent forest of the Garhwal Himalayas. Forest Studies in China, 14(3), 205–209.

    Article  Google Scholar 

  • Shrestha, B. P. (2009). Carbon sequestration in Schima-Castanopsis forest: a case study from Palpa District. The Greenery, 7(1), 34–40.

    Google Scholar 

  • Singh, S. K., Panda, C. B., Sigh, G. S., Starker, D., & Sager, R. (2011). Concentration and stock of carbon in the soils affected by land uses and climates in the Western Himalaya, India. Catena, 87, 78–89.

    Article  CAS  Google Scholar 

  • Smolander, A., Loponen, J., Suominen, K., & Kitunen, V. (2005). Organic matter characteristics and C and N transformations in the humus layer under two tree species, Betula pendula and Picea abies. Soil Biology and Biochemistry, 37, 1309–1318.

    Article  CAS  Google Scholar 

  • Tewksbury, C. E., & Miegroet, H. V. (2007). Soil organic carbon dynamics along a climatic gradient in a southern Appalachian spruce-fir forest. Canadian Journal Forest Research, 37, 1161–1172.

    Article  CAS  Google Scholar 

  • Thuille, A., Buchmann, N., & Schulze, E. D. (2000). Carbon stocks and soil respiration rates during deforestation, grassland use and subsequent Norway spruce afforestation in the Southern Alps, Italy. Tree Physiology, 20, 849–857.

    Article  Google Scholar 

  • Townsend, A. R., Vitousek, P. M., & Amundson, R. R. (1996). Soil organic matter dynamics along gradients in temperature and land use on the island of Hawaii. Ecology, 76, 721–733.

    Article  Google Scholar 

  • Trumbore, S. E. (2000). Age of soil organic matter and soil respiration: radiocarbon constraints on belowground carbon dynamics. Ecological Applications, 10, 399–411.

    Article  Google Scholar 

  • Tsui, C. C., Tsai, C. C., & Chen, Z. S. (2013). Soil organic carbon stocks in relation to elevational gradients in volcanic ash soils of Taiwan. Geoderma, 209–210, 119–127.

    Article  Google Scholar 

  • Twongyirwe, R., Sheil, D., Majaliwa, J. G. M., Ebanyat, P., Tenywa, M. M., van Heist, M., & Kurmar, L. (2013). Variability of soil organic carbon stocks under different land uses: a study in an afro-montane landscape in south-western Uganda. Geoderma, 193–194, 282–289.

    Article  Google Scholar 

  • Uri, V., Varik, M., Aosaar, J., Kanal, A., Kukumagi, M., & Lohmus, K. (2012). Biomass production and carbon sequestration in a fertile silver birch (Betulapendula Roth) forest chronosequence. Forest Ecology and Management, 267, 117–126.

    Article  Google Scholar 

  • Usuga, J. C. L., Toro, J. A. R., Alzate, M. V. R., & Tapias, A. D. J. L. (2010). Estimation of biomass and carbon stocks in plants, soil and forest floor in different tropical forests. Forest Ecology and Management, 260, 1906–1913.

    Article  Google Scholar 

  • Verma, K. S., Shyampura, R. L., & Jain, S. P. (1990). Characterization of soils under forest of Kashmir valley. Journal Indian Society of Soil Science, 38, 107–115.

    Google Scholar 

  • Walkley, A. (1947). An estimation of methods for determining organic carbon and nitrogen in soils. Journal of Agricultural Science, 25, 598–609.

    Article  Google Scholar 

  • Wei, Y., Li, M., Chen, H., Lewis, B. J., Yu, D., Zhou, W., Fang, X., Zhao, W., & Dai, L. (2013). Variation in carbon storage and its distribution by stand age and forest type in boreal and temperate forests in Northeast China. PLoS ONE, 8(8), e72201. doi:10.1371/journal.pone.oo72201.

    Article  CAS  Google Scholar 

  • Yanai, R. D., Arthur, M. A., Siccama, T. G., & Federer, C. A. (2000). Challenges of measuring forest floor organic matter dynamics, repeated measures from a chronosequence. Forest Ecology and Management, 138, 273–283.

    Article  Google Scholar 

  • Yang, L. Y., Luo, T. X., & Wu, S. T. (2005). Root biomass and underground C and N storage of primitive Korean pine and broad-leaved Climax forest in Changbai Mountains at its different succession stages. Chinese Journal Applied Ecology, 16, 1195–1199.

    CAS  Google Scholar 

  • Yang, Y. H., Mohammat, A., Feng, J. M., Zhou, R., & Fang, J. Y. (2007). Storage, patterns and environmental controls of soil organic carbon in China. Biogeochemistry, 84, 131–141.

    Article  Google Scholar 

  • Yimer, F., Stig, L., & Abdu, A. (2006). Soil organic carbon and total nitrogen stocks as affected by topographic aspect and vegetation community in the Bale Mountains, Ethiopia. Geoderma, 135, 335–344.

    Article  CAS  Google Scholar 

  • Yoo, K., Armundson, R., Heimsath, A. M., & Dietrich, W. E. (2006). Spatial patterns of soil organic carbon on hill slopes: integrating geomorphic processes and the biological C cycle. Geoderma, 130, 47–65.

    Article  CAS  Google Scholar 

  • Yuan, Z., Gazol, A., Lin, F., Ye, J., Shi, S., Wang, X., Wang, M., & Hao, Z. (2013). Soil organic carbon in an old growth temperate forests: spatial pattern, determinants and bias in its quantification. Geoderma, 195–196, 48–55.

    Article  Google Scholar 

  • Zhang, Q. Z., & Wang, C. K. (2010). Carbon density and distribution of six Chinese temperate forests. Science China Life Science, 53, 831–840.

    Article  CAS  Google Scholar 

  • Zhang, M., Zhang, X. K., Liang, W. J., Jiang, Y., Dai, G. H., Wang, X. G., & Han, S. J. (2011). Distribution of soil organic carbon fractions along the altitudinal gradient in Changbai Mountain, China. Pedosphere, 21, 615–620.

    Article  CAS  Google Scholar 

  • Zhang, Y., Gu, F., Liu, S., Liu, Y., & Li, C. (2013). Variations of carbon stock with forest types in subalpine region of southwestern China. Forest Ecology and Management, 300, 88–95.

    Article  Google Scholar 

  • Zhu, B., Wang, X., Fang, J., Piao, S., Shen, H., Zhao, S., & Peng, C. (2010). Altitudinal changes in carbon storage of temperate forests on Mt Changbai, Northeast China. Journal Plant Research, 123, 439–452.

    Article  Google Scholar 

Download references

Acknowledgments

We thankfully acknowledge the financial support provided by UGC, Government of India, for its fellowship and Divisional Forest Officers of Anantnag and Lidder Division for permission of this study. I am also thankful to Department of Botany, Islamic College of Science and Commerce for their laboratory facilities. We thank Christopher Hammond for his help in English correction of draft of the manuscript. We thank Prof. M.L. Khan, Department of Botany, Dr. Hari Singh Gour University, Sagar, M.P., and Dr. S. Chandrasekaran, Associate Professor, Department of Plant Sciences, Madurai Kamaraj University, Madurai, for reviewing the first draft of the manuscript. We thank the anonymous reviewers for their valuable comments to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundarapandian Somaiah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad Dar, J., Somaiah, S. Altitudinal variation of soil organic carbon stocks in temperate forests of Kashmir Himalayas, India. Environ Monit Assess 187, 11 (2015). https://doi.org/10.1007/s10661-014-4204-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-014-4204-9

Keywords

Navigation