Skip to main content

Advertisement

Log in

Heavy metal content of edible plants collected close to an area of intense mining activity (southern Portugal)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Neves-Corvo mining complex (MC) situated in southern Portugal exploits one of the most world’s important copper deposits. Agricultural soils surrounding the MC, used by the inhabitants for crop production, contain excessive amounts of As, Cu, Pb, and Zn. Thus, a potential risk to human consumption exists if edible plants grow on these substrata. Arsenic and Pb were not detected in edible samples collected near the MC and 5 km away, but in the leaves—structural or adsorbed onto the surface. In general, Zn was the most mobile element in both contaminated and reference areas as seen by the bioaccumulation factors (BAF). The tolerable upper intake (TUI) values for Cu are a reason of concern, since in 57.1% of the cases, the TUI values are above the recommended upper limit of 5 mg/day, in the case of Ficus carica, Cucurbita pepo, and Phaseolus vulgaris, whereas in 28.6% of the cases, the TUI values are near this limit (C. pepo and Citrus x sinensis). The consumption of such vegetables from these areas must be banned or strongly reduced, since long-term accumulation of Cu can cause a chronic toxicity in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Alyazichi, Y. M., Jones, B. G., McLean, E., Pease, J., & Brown, H. (2017). Geochemical assessment of trace element pollution in surface sediments from the Georges River, Southern Sydney, Australia. Archives of Environmental Contamination and Toxicology, 72(2), 247–259.

    Article  CAS  Google Scholar 

  • Batista, M. J., Abreu, M. M., & Pinto, M. S. (2007). Biogeochemistry in Neves Corvo mining region, Iberian Pyrite Belt, Portugal. Journal of Geochemical Exploration, 92(2–3), 159–176.

    Article  CAS  Google Scholar 

  • Carrondo, M. J. T., Reboredo, F., Ganho, R. M. B., & Oliveira, J. F. S. (1984). Analysis of sediments for heavy metals by a rapid electrothermal atomic-absorption procedure. Talanta, 31, 561–564.

    Article  CAS  Google Scholar 

  • El-Hamiani, O., El-Khalil, H., Sirguey, C., Ouhammou, A., Bitton, G., Schwartz, C., & Boularbah, A. (2015). Metal concentrations in plants from mining areas in South Morocco: health risks assessment of consumption of edible and aromatic plants. Clean, 43(3), 399–407.

    CAS  Google Scholar 

  • EPA. (1988). Field portable X-ray fluorescence spectrometry for the determination of elemental concentration in soil and sediment, method 6200. Washington, DC: U.S. Environmental Protection Agency (EPA).

    Google Scholar 

  • Ferreira da Silva, E., Durães, N., Reis, P., Patinha, C., Matos, J., & Costa, M. R. (2015). An integrative assessment of environmental degradation of Caveira abandoned mine área (Southern Portugal). Journal of Geochemical Exploration, 159, 33–47.

    Article  CAS  Google Scholar 

  • Gimeno-García, E., Andreu, V., & Boluda, R. (1996). Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environmental Pollution, 92(1), 19–25.

    Article  Google Scholar 

  • Gonzalez-Fernandez, O., Batista, M. J., Abreu, M. M., Queralt, I., & Carvalho, M. L. (2011). Elemental characterization of edible plants and soils in an abandoned mining region: assessment of environmental risk. X-Ray Spectrometry, 40, 353–363.

    Article  CAS  Google Scholar 

  • Hall, D. G., Ammar, E.-D., Bowman, K. D., & Stover, E. (2017). Epifluorescence and stereomicroscopy of trichomes associated with resistant and susceptible host plant genotypes of the Asian citrus psyllid (Hemiptera: Liviidae), vector of citrus greening disease bacterium. Journal of Microscopy and Ultrastructure. https://doi.org/10.1016/j.jmau.2017.04.002.

  • Jayasumana, C., Fonseka, S., Fernando, A., Jayalath, K., Amarasinghe, M., Siribaddana, S., Gunatilake, S., & Paranagama, P. (2015). Phosphate fertilizer is a main source of arsenic in areas affected with chronic kidney disease of unknown etiology in Sri Lanka. SpringerPlus, 4, 90. https://doi.org/10.1186/s40064-015-0868-z.

    Article  CAS  Google Scholar 

  • Joint FAO/WHO Expert Committee on Food Additives. (1999). Summary and conclusions. In: 53rd Meeting, Rome, June 1–10, 1999.

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). Boca Raton: CRC Press, Taylor & Francis Group.

    Google Scholar 

  • Malan, M., Muller, F., Raitt, L., Aalbers, J., Cyster, L., & Brendonck, L. (2015). Farmyard manures: the major agronomic sources of heavy metals in the Philippi Horticultural Area in the Western Cape Province of South Africa. Environmental Monitoring and Assessment, 187, 708. https://doi.org/10.1007/s10661-015-4918-3.

    Article  CAS  Google Scholar 

  • Nawab, J., Khan, S., Shah, M. T., Qamar, Z., Din, I., Mahmood, Q., Gul, N., & Huang, Q. (2015). Contamination of soil, medicinal and fodder plants with lead and cadmium in mine-affected areas, Northern Pakistan. Environmental Monitoring and Assessment, 187, 605. https://doi.org/10.1007/s10661-015-4807-9.

    Article  CAS  Google Scholar 

  • Ontario Ministry of the Environment. (2011). Soil, ground water and sediment standards for use. Canadian legislation. Under Part XV.1 of the Environmental Protection Act. 27 pp.

  • Pelica, J., Barbosa, S., Reboredo, F., Lidon, F., Pessoa, F., & Calvão, T. (2018). The paradigm of high concentration of metals of natural or anthropogenic origin in the soils—the case of Neves-Corvo mining area (Southern of Portugal). Journal of Geochemical Exploration, 186, 12–23.

    Article  CAS  Google Scholar 

  • Pessanha, S., Guilherme, A., & Carvalho, M. L. (2009). Comparison of matrix effects on portable and stationary XRF spectrometers for cultural heritage samples. Applied Physics A, 97, 497–505.

    Article  CAS  Google Scholar 

  • Radwan, M. A., & Salama, A. K. (2006). Market basket survey for some heavy metals in Egyptian fruits and vegetables. Food and Chemical Toxicology, 44, 1273–1278.

    Article  CAS  Google Scholar 

  • Ramos, I., Pataco, I. M., Mourinho, M. P., Lidon, F., Reboredo, F., Pessoa, M. F., Carvalho, M. L., Santos, J. P., & Guerra, M. (2016). Elemental mapping of biofortified wheat grains using micro X-ray fluorescence. Spectrochimica Acta Part B, 120, 30–36.

    Article  CAS  Google Scholar 

  • Reboredo, F. (1991). Cu and Zn uptake by Halimione portulacoides (L.) aellen. A long-term accumulation experiment. Bulletin of Environmental Contamination and Toxicology, 46(3), 442–449.

    Article  CAS  Google Scholar 

  • Reboredo, F. (1992). Cadmium accumulation by Halimione portulacoides (L.) Aellen. A seasonal study. Marine Environmental Research, 33, 17–29.

    Article  CAS  Google Scholar 

  • Reboredo, F. (1993). How differences in the field influence Cu, Fe and Zn uptake by Halimione portulacoides and Spartina maritima. Science of Total Environment, 133, 111–132.

    Article  CAS  Google Scholar 

  • Reboredo, F. (1994). The interaction between copper and zinc and their uptake by Halimione portulacoides (L.) Aellen. Bulletin of Environmental Contamination and Toxicology, 52, 598–605.

    Article  CAS  Google Scholar 

  • Reboredo, F. (2001). Cadmium uptake by Halimione portulacoides. An ecophysiological study. Bulletin of Environmental Contamination and Toxicology, 67, 926–933.

    CAS  Google Scholar 

  • Reboredo, F. (2012). Zinc compartmentation in Halimione portulacoides (L.) Aellen and some effects on leaf ultrastructure. Environmental Science and Pollution Research, 19, 2644–2657.

    Article  CAS  Google Scholar 

  • Reboredo, F. H. S., & Ribeiro, C. A. G. (1984). Vertical distribution of Al, Cu, Fe and Zn in soil salt marshes of the Sado estuary, Portugal. International Journal of Environmental Studies, 23, 249–253.

    Article  CAS  Google Scholar 

  • Riviére, A. (1977) Méthodes granulométriques. Techniques et interprétations. Masson edit., (Paris) 170 pp.

  • Roba, C., Rosu, C., Pistea, I., Ozunu, A., & Baciu, C. (2016). Heavy metal content in vegetables and fruits cultivated in Baia Mare mining area (Romania) and health risk assessment. Environmental Science and Pollution Research, 23, 6062–6073.

    Article  CAS  Google Scholar 

  • Romic, M., & Romic, D. (2003). Heavy metal distribution in agricultural topsoils in urban area. Environmental Geology, 43, 795–805.

    Article  CAS  Google Scholar 

  • Santos, E. S., Abreu, M. M., Nabais, C., & Magalhães, M. C. F. (2012). Trace element distribution in soils developed on gossan mine wastes and Cistus ladanifer L. tolerance and bioaccumulation. Journal of Geochemical Exploration, 123, 45–51.

    Article  CAS  Google Scholar 

  • Santos, S. C. P.-L., Cruz, M. E., Barroso, A. M. E., Fonseca, C. P. S., Guerra, M., Carvalho, M. L., & Santos, J. P. (2014). Elemental characterization of plants and soils in Panasqueira tungsten mining region. Journal of Soils and Sediments, 14, 778–784.

    Article  CAS  Google Scholar 

  • Shaheen, N., Irfan, N. M., Khan, I. N., Islam, S., Islam, M. S., & Ahmed, M. K. (2016). Presence of heavy metals in fruits and vegetables: health risk implications in Bangladesh. Chemosphere, 152, 431–438.

    Article  CAS  Google Scholar 

  • Sharma, R. K., Agrawal, M., & Marshall, F. (2006). Heavy metal contamination in vegetables grown in wastewater irrigated areas of Varanasi, India. Bulletin of Environmental Contamination and Toxicology, 77, 312–318.

    Article  CAS  Google Scholar 

  • Smith, J. L., & Doran, J. W. (1996). Measurement and use of pH and electrical conductivity for soil quality analysis. In J. W. Doran & A. J. Jones (Eds.), Methods for assessing soil quality. Madison: Soil Science Society of America Journal, Special Publication 49, SSSA.

    Google Scholar 

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy metal levels in estuaries and the formation of a pollution index. Helgolander Meeresuntersuchungen, 33, 566–575.

    Article  Google Scholar 

  • Ugolini, F., Tognetti, R., Raschi, A., & Bacci, L. (2013). Quercus ilex L. as bioaccumulator for heavy metals in urban areas: effectiveness of leaf washing with distilled water and considerations on the trees distance from traffic. Urban Forest and Urban Greening, 12, 576–584.

    Article  Google Scholar 

  • USEPA. (2011). USEPA Regional Screening Level (RSL) Summary Table: November 2011. Available at: http://www.epa.gov/regshwmd/risk/human/Index.htm, last update: 6th December, 2011.

  • World Health Organization. (1996). Trace elements in human nutrition and health. Geneva: WHO 343 pp.

    Google Scholar 

  • Zhuang, P., McBride, M. B., Xia, H., Li, N., & Li, Z. (2009). Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Science of Total Environment, 407, 1551–1561.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to anonymous reviewers for their constructive and helpful comments. M. Guerra acknowledges the support of the FCT, under Contract No. SFRH/BPD/92455/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando H. Reboredo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reboredo, F.H., Pelica, J., Lidon, F.C. et al. Heavy metal content of edible plants collected close to an area of intense mining activity (southern Portugal). Environ Monit Assess 190, 484 (2018). https://doi.org/10.1007/s10661-018-6844-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6844-7

Keywords

Navigation