Skip to main content
Log in

Distribution of the bioavailable and total content of copper and lead, in river sediments of the Jamapa-Atoyac fluvial system, Mexico

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Jamapa-Atoyac fluvial system (JAFS) is tropical river system, which flows from the Pico de Orizaba, the highest elevation in Mexico, to end in the city of Veracruz, in the southern Gulf of Mexico. The geology of the watershed is dominated by Tertiary igneous rocks and Cretaceous limestones in the upper basin, and Quaternary alluvial sediments in the lower basin. Seventy percent of the land in the watershed has been deforested, and there are various urban and industrial areas. The JAFS is been widely known as source of trace elements to the coastal zone, and considered as contaminated. So, the aim of this study was to assess the environmental quality of the JAFS, using the total (TC) and the bioavailable (BF) concentrations of Cu and Pb, in surface fluvial sediments samples, in the dry (DS) and rainy (RS) seasons of the 2016. Average concentrations and ranges for the JAFS were CuT 10.2 ± 5.2 μg/g (2.2–41.5 μg/g); CuB 1.1 ± 1.4 μg/g (0.04–10.7 μg/g); PbT 5.0 ± 1.2 μg/g (1.8–10.9 μg/g); and PbB 0.7 ± 0.4 μg/g (0.1–2.0 μg/g). The BF only accounts for the ~ 10% of the total concentration for both elements, and is highly correlated to the mud content. No differences in average concentrations were found between the upper and lower bassins, nor among areas with different lithology. Cu presented higher concentrations during the RS, which suggest an enrichment of fluvial sediments from soil erosion, contrary, to Pb with higher concentrations during the DS. Although, some sampling stations, those located immediately after the Cordoba and Miguel Aleman cities, presented higher than average Cu and Pb concentrations, they did not exceeded the limits established by national environmental regulations, sediment quality guidelines, geoaccumulation index, and potential ecological risk indexes. Hence, the JAFS may be considered as not contaminated by Cu and Pb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrahim, G. M. S., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136(1–3), 227–238.

    CAS  Google Scholar 

  • Akcay, H., Oguz, A., & Karapire, C. (2003). Study of heavy metal pollution and speciation in Buyak Menderes and Gediz river sediments. Water Research, 37(4), 813–822.

    Article  CAS  Google Scholar 

  • An, Y. J., & Kampbell, D. H. (2003). Total, dissolved, and bioavailable metals at Lake Texoma marinas. Environmental Pollution, 122(2), 253–259.

    Article  CAS  Google Scholar 

  • ANZECC (Australian and New Zealand Environment and Conservation Council). (1997). ANZECC interim sediment quality guidelines. Report for the Environmental Research Institute of the Supervising Scientist. Sydney, Australia.

  • Bahena-Manjarrez, J. L., Rosales-Hoz, L., & Carranza-Edwards, A. (2002). Spatial and temporal variation of heavy metals in a tropical estuary. Environmental Geology, 42(6), 575–582.

    Article  CAS  Google Scholar 

  • Barlas, N. A., & Aydoǧan, M. (2005). Assessment of heavy metal residues in the sediment and water samples of Uluabat Lake, Turkey. Bulletin of Environmental Contamination and Toxicology, 74, 286–293.

    Article  CAS  Google Scholar 

  • Bermejo, J. C. S., Beltran, R., & Ariza, J. L. G. (2003). Spatial variations of heavy metals contamination in sediments from Odiel river (Southwest Spain). Environment International, 29, 69–77.

    Article  Google Scholar 

  • Burton, G. A., Jr. (2002). Sediment quality criteria in use around the world. Limnology, 3(2), 65–76.

    Article  CAS  Google Scholar 

  • Carrasco-Núñez, G., 2000. Structure and proximal stratigraphy of Citlaltépetl Volcano (Pico de Orizaba), Mexico. In: Delgado-Granados, H., Aguirre-Díaz, G., Stock, J. M. (Eds.), Cenozoic Volcanism and Tectonics of Mexico (pp. 247–262) Geol Soc Am Spec Pap., 334.

    Chapter  Google Scholar 

  • Carrasco-Núñez, G., & Gómez-Tuena, A., 1997. Volcanogenic sedimentation around Citlaltépetl volcano (Pico de Orizaba) and surroundings, Veracruz, Mexico. In: Aguirre-Díaz, G.J., Aranda-Gómez, J.J., Carrasco-Núñez, G., Ferrari, L. (Eds.), Magmatism and tectonics in the central and northwestern México—a selection of the 1997 IAVCEI general assembly excursions (pp 131–151). Instituto de Geología, Excursión, 16. UNAM, México, D. F.

  • Carrasco-Núñez, G., Díaz-Castellón, R., Siebert, L., Hubbard, B., Sheridan, M. F., & Rodríguez, S. R. (2006). Multiple edifice-collapse events in the Eastern Mexican Volcanic Belt: the role of sloping substrate and implications for hazard assessment. Journal of Volcanology and Geothermal Research, 158, 151–176.

    Article  Google Scholar 

  • CCME (Canadian Council of Ministers of the Environment). (1995). Protocol for the derivation of Canadian sediment quality guidelines for the protection of aquatic life. Prepared by the Technical Secretariat of the CCME Task Group on Water Quality Guidelines, Ottawa.

  • CDO. (2017). Climate-Data.Org (https://es.climate-data.org/). Accessed 09/15/2017.

  • Celis-Hernández, O., Rosales-Hoz, L., & Carranza-Edwards, A. (2013). Heavy metal enrichment in surface sediments from the SW Gulf of Mexico. Environmental Monitoring and Assessment, 185(11), 8891–8907.

    Article  Google Scholar 

  • Chakraborty, S., Chakraborty, P., & Nath, B. N. (2015). Lead distribution in coastal and estuarine sediments around India. Marine Pollution Bulletin, 97(1), 36–46.

    Article  CAS  Google Scholar 

  • Chen, Z., Li, J., Shen, H., & Zhanghua, W. (2001). Yangtze River of China: historical analysis of discharge variability and sediment flux. Geomorphology, 41, 77–91.

    Article  Google Scholar 

  • Colby, B. R. (1963). Fluvial sediments. A summary of source, transportation, deposition, and measurement of sediment discharge. Contributions to General Geology. Geological Survey Bulletin, 1181-A. 47 p.

  • CONAGUA (Comisión Nacional del Agua, México). (2016). Atlas del agua en México. CONAGUA. CDMX, México. 137 p.

  • Dai, S. B., & Lu, X. X. (2014). Sediment load change in the Yangtze River (Changjiang): a review. Geomorphology, 215, 60–73.

    Article  Google Scholar 

  • Deycard, V. N., Schäfer, J., Blanc, G., Coynel, A., Pettit, J. C. J., Lanceleur, L., Dutruch, L., Bossy, C., & Ventura, A. (2014). Contributions and potential impacts of seven priority substances (As, Cd, Cu, Cr, Ni, Pb, and Zn) to a major European Estuary (Gironde estuary, France) from urban wastewater. Marine Chemistry, 167, 123–134.

    Article  CAS  Google Scholar 

  • Duan, L., Song, J., Xu, Y., Li, X., & Zhang, Y. (2010). The distribution, enrichment and source of potential harmful elements in surface sediments of Bohay Bay, North China. Journal of Hazardous Materials, 183, 155–164.

    Article  CAS  Google Scholar 

  • Eggleton, J., & Thomas, K. (2004). A review of factors affecting the release and bioavailability of contaminants.

  • Fu, J., Zhao, C., Luo, Y., Liu, C., Kyzas, G. Z., Luo, Y., & Zhu, H. (2014). Heavy metals in surface sediments of the Jialu River, China: their relations to environmental factors. Journal of Hazardous Materials, 270, 102–109.

    Article  CAS  Google Scholar 

  • Galán, E., Gómez-Ariza, J. L., González, I., Fernández-Caliani, J. C., Morales, E., & Giráldez, I. (2003). Heavy metal partitioning in river sediments severely polluted by acid mine drainage in the Iberian Pyrite Belt. Applied Geochemistry, 18(3), 409–421.

    Article  Google Scholar 

  • Gleyzes, C., Tellier, S., & Astruc, M. (2002). Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. TrAC Trends in Analytical Chemistry, 21(6), 451–467.

    Article  CAS  Google Scholar 

  • Grygar, M., Novakova, T., Babek, O., Elznicova, J., & Vadinova, N. (2013). Robust assessment of moderate heavy metal contamination levels in floodplain sediments: a case study on the Jizera River, Czech Republic. Science of the Total Environment, 452, 233–245.

    Article  Google Scholar 

  • Hairsine, P. B., & Rose, C. W. (1991). Rainfall detachment and deposition: sediment transport in the absence of flow-driven processes. Soil Science Society of America Journal, 55(2), 320–324.

    Article  Google Scholar 

  • Hakanson, L. (1980). Ecological risk index for aquatic pollution control, a sedimentological approach. Water Research, 14, 975–1001.

    Article  Google Scholar 

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 9.

    Google Scholar 

  • Han, D., Cheng, J., Hu, X., Jiang, Z., Mo, L., Xu, H., Ma, Y., Chen, X., & Wang, H. (2017). Spatial distribution, risk assessment and source identification of heavy metals in sediments of the Yangtze River Estuary, China. Marine Pollution Bulletin, 115(1–2), 141–148.

    Article  CAS  Google Scholar 

  • Hejabi, A. T., Basavarajappa, H. T., & Saeed, A. M. Q. (2010). Heavy metal pollution in Kabini River sediments. International Journal of Environmental Research, 4, 629–636.

    Google Scholar 

  • Hernández-Santana, J. R., Méndez-Linares, A. P., López-Portillo, J. A., & Preciado-López, J. C. (2016). Coastal geomorphological cartography of Veracruz State, Mexico. Journal of Maps, 12(2), 316–323. https://doi.org/10.1080/17445647.2015.1016128.

    Article  Google Scholar 

  • Horowitz, A., & Elrick, K. (1987). The relation of stream sediment surface area, grain size and composition of trace element chemistry. Applied Geochemistry, 2, 437–452.

    Article  CAS  Google Scholar 

  • Horta-Puga, G. (2017). Geochemical partitioning of lead in biogenic carbonate sediments in a coral reef depositional environment. Marine Pollution Bulletin, 116(1), 71–79.

    Article  CAS  Google Scholar 

  • Horta-Puga, G., & Carriquiry, J. D. (2014). The last two centuries of lead pollution in the southern Gulf of Mexico recorded in the annual bands of the scleractinian coral Orbicella faveolata. Bulletin of Environmental Contamination and Toxicology, 92, 567–573.

    Article  CAS  Google Scholar 

  • Horta-Puga, G., Cházaro-Olvera, S., Winfield, I., Avila-Romero, M., & Moreno-Ramírez, M. (2013). Cadmium, copper and lead in macroalgae from the Veracruz reef system, Gulf of Mexico. Marine Pollution Bulletin, 68, 127–133.

    Article  CAS  Google Scholar 

  • INEGI (Instituto Nacional de Estadística y Geografía). (2015). Panorama sociodemográfico de Veracruz de Ignacio de la Llave. Tomo I y II.

  • Kabata-Pendias, A. (2010). Trace elements in soils and plants. Boca Raton: CRC press.

    Book  Google Scholar 

  • Larner, B. L., Palmer, A. S., Seen, A. J., & Townsend, A. T. (2008). A comparison of an optimized sequential extraction procedure and dilute acid leaching of elements in anoxic sediments, including the effects of oxidation on sediment metal partitioning. Analytica Chimica Acta, 608(2), 147–157.

    Article  CAS  Google Scholar 

  • Loring, D. H. (1979). Geochemistry of cobalt, nickel, chromium and vanadium in the sediments of the Estuary and Gulf of St. Lawrence. Canadian Journal Earth Science, 16, 1196–1209.

    Article  CAS  Google Scholar 

  • Loring, D. H., & Rantala, R. T. T. (1992). Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth-Science Reviews, 32, 235–283.

    Article  CAS  Google Scholar 

  • Lu, X. X., & Higgitt, D. L. (1999). Sediment yield variability in the upper Yangtze, China. Earth Surface Process and Landforms, 24, 1077–1093.

    Article  Google Scholar 

  • MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39, 20–31.

    Article  CAS  Google Scholar 

  • Massoudieh, A., Bombardelli, F. A., & Ginn, T. R. (2010). A biogeochemical model of contaminant fate and transport in river waters and sediments. Journal of Contaminant Hydrology, 112, 103–117.

    Article  CAS  Google Scholar 

  • McLennan, S. M., Hemming, S., McDaniel, D. K., & Hanson, G. N. (1993). Geochemical approaches to sedimentation, provenance, and tectonics. In: Johnsson M. J., & Basu A. (Eds) Processes Controlling the Composition of Clastic Sediments, Geological Society of America Special Paper.

  • Meade, R. H., Yuzyk, T. R., & Day, T. J. (1990). Movement and storage of sediment in rivers of the United States and Canada. In Wolman, G. M., & Riggs S. R. (Eds.) The Geology of North America Vol. O-1 Surface Water Hydrology (pp. 255–280). Boulder, CO: GSA.

  • Milliman, J. D., & Farnsworth, K. L. (2011). River discharge to the coastal ocean: a global synthesis. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Morgan, R. P. C., Quinton, J. N., Smith, R. E., Govers, G., Poesen, J. W. A., Auerswald, K., & Styczen, M. E. (1998). The European soil Erosion model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms, 23(6), 527–544.

    Article  Google Scholar 

  • Müller, G. (1969). Index of geoaccumulation in the sediments of the Rhine River. Geojournal, 2, 108–118.

    Google Scholar 

  • N’guessan, Y. M., Probst, J. L., Bur, T., & Probost, A. (2009). Trace elements in stream bed sediments from agricultural catchments (Gascogne region, S-W France): where do they come from? Science of the Total Environment, 407, 2239–2952.

    Google Scholar 

  • Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters, 8, 199–216.

    Article  CAS  Google Scholar 

  • NOM (Norma Oficial Mexicana). (2002). NOM-021-SEMARNAT-2000. Norma que establece las especificaciones de fertilidad, salinidad y clasificación de suelos, estudio, muestreo y análisis. Diario Oficial de la Federación, pp. 1–85.

  • Owens, P. N., Batalla, R. J., Collins, A. J., Gomez, B., Hicks, D. M., Horowitz, A. J., Kondolf, G. M., Marden, M., Page, M. J., Peacock, D. H., Petticrew, E. L., Salmons, W., & Trustrum, N. A. (2005). Fine-grained sediment in river systems: environmental significance and management issues. River Research and Applications, 21, 693–717.

    Article  Google Scholar 

  • Piest, R. F., Wyatt, G. M., & Bradford, J. M. (1975). Soil erosion and sediment transport from gullies. Journal of the Hydraulics Division, 101(1), 65–80.

    Google Scholar 

  • Ramos, L., Gonzalez, M. J., & Hernandez, L. M. (1999). Sequential extraction of copper, lead, cadmium, and zinc in sediments from Ebro River (Spain): relationship with levels detected in earthworms. Bulletin of Environmental Contamination and Toxicology, 62(3), 301–308.

    Article  CAS  Google Scholar 

  • Ridgway, J., & Shimmield, G. (2002). Estuaries as repositories of historical contamination and their impact on shelf seas. Estuarine Coastal and Shelf Science., 55, 903–928.

    Article  CAS  Google Scholar 

  • Rosales-Hoz, L., & Carranza-Edwards, A. (1998). Heavy metals in sediments from Coatzacoalcos river, Mexico. Bulletin of Environmental Control and Toxicology, 60, 553–561.

    Article  CAS  Google Scholar 

  • Rosales-Hoz, L., Cundy, A. B., & Bahena-Manjarrez, J. L. (2003). Heavy metals in sediment cores from a tropical estuary affected by anthropogenic discharges: Coatzacoalcos estuary, Mexico. Estuarine, Coastal and Shelf Science, 58(1), 117–126.

    Article  CAS  Google Scholar 

  • Rosales-Hoz, L., Carranza-Edwards, A., & Celis-Hernández, O. (2007). Environmental implications of heavy metals in surface sediments near Isla de Sacrificios, Mexico. Bulletin of Environmental Contamination and Toxicology, 78, 353–357.

    Article  CAS  Google Scholar 

  • Salt, D. E., & Krämer, U. (2000). Mechanisms of metal hyperaccumulation in plants. In Phytoremediation of toxic metals: using plants to clean up the environment (pp. 231–245). Hoboken: John Wiley & Sons.

    Google Scholar 

  • Schaaf, P., & Carrasco-Núñez, G. (2010). Geochemical and isotopic profile of Pico de Orizaba (Citlaltépetl) volcano, Mexico: Insights for magma generation processes. Journal of Volcanology and Geothermal Research, 197(1), 108–122.

    Article  CAS  Google Scholar 

  • Senesi, G. S., Baldasarre, G., Senesi, N., & Radina, B. (1999). Trace element inputs into soils by anthropogenic activities and implications for human health. Chemosphere, 39, 343–377.

    Article  CAS  Google Scholar 

  • SGM (Servicio Geológico Mexicano). (2005). Carta Geológico-Minera del Estado de Veracruz, 1a edición: Escala 1:500000.

  • Sheldrick, B. H., & Wang, C. (1993). Particle size distribution. In M. R. Carter (Ed.), Soil sampling and methods of analysis. USA: Lewis Publishers.

    Google Scholar 

  • Sierra, C., Ruiz-Barzola, O., Menéndez, M., Demney, J. R., & Vicente-Villardón, J. L. (2017). Geochemical interactions study in surface river sediments at an artisanal mining area by means of canonical (MANOVA)-biplot. Journal of Geochemical Exploration, 175, 72–81.

    Article  CAS  Google Scholar 

  • Singh, K. P., Mohan, D., Singh, V. K., & Malik, A. (2005). Studies on distribution and fractionation of heavy metals in Gomti river sediments—a tributary of the Ganges, India. Journal of Hydrology, 312(1), 14–27.

    Article  CAS  Google Scholar 

  • Soon, Y. K., & Abboud, S. (1993). Cadmium, chromium, lead and nickel. In M. R. Carter (Ed.), Soil sampling and methods of analysis. USA: Lewis Publishers.

    Google Scholar 

  • Susolo, D., Cicchella, D., Catani, V., Giaccio, L., Guagliardi, I., Esposito, L., & De Vivo, B. (2017). Assessment of potentially harmful elements pollution in the Calore River basin (Southern Italy). Environmental Geochemistry and Health, 39, 531–548.

    Article  Google Scholar 

  • Tayfur, G., Ozdemir, S., & Singh, V. P. (2003). Fuzzy logic algorithm for runoff-induced sediment transport from bare soil surfaces. Advances in Water Resources, 26(12), 1249–1256.

    Article  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2), 241–265.

    Article  Google Scholar 

  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. In A. Luch (Ed.), Molecular, Clinical and Environmental Toxicology (pp. 133–164). Springer, Basel.

  • Terán-Baamonde, J., Carlosena, A., Soto-Ferreiro, R. M., Andrade, J. M., & Prada, D. (2017). Fast assessment of bioaccessible metallic contamination in marine sediments. Marine Pollution Bulletin, 125(1–2), 310–317.

    Article  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.

    Article  CAS  Google Scholar 

  • Torres-Beristáin, B., González-López, G., Rustrián-Portilla, E., & Houbron, E. (2013). Enfoque de cuenca para la identificación de fuentes de contaminación y evaluación de la calidad de un río, Veracruz, México. Revista internacional de contaminación ambiental, 29(3), 135–146.

    Google Scholar 

  • Town, R.M. (2000) Bioavailability of metals. Analytical Chemistry, (1) P. 25A.

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. Geological Society of America Bulletin, 72(2), 175–192.

    Article  CAS  Google Scholar 

  • US EPA (United States Environmental Protection Agency). (1997). The incidence and severity of sediment contamination in surface waters of the United States. Volume 1: National sediment quality survey. EPA 823-R-97-006, Office of Science and Technology, Washington, DC.

  • Varol, M. (2011). Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. Journal of Hazardous Materials, 195, 355–364.

    Article  CAS  Google Scholar 

  • Vázquez-Botello, A., Villanueva-Fragoso, S., & Rosales-Hoz, L. (2004). Distribución y contaminación de metales en el Golfo de México. Diagnostico ambiental del Golfo de México. Compiladores: Caso, MI Pisanty, 682–712.

  • Wang, Z., Shan, X. Q., & Zhang, S. (2002). Comparison between fractionation and bioavailability of trace elements in rhizosphere and bulk soils. Chemosphere, 46(8), 1163–1171.

    Article  CAS  Google Scholar 

  • Woitke, P., Wellmitz, J., Helm, D., Kube, P., Lepom, P., & Litheraty, P. (2003). Analysis and assessment of heavy metal pollution in suspended solids and sediments of the river Danube. Chemosphere, 51, 633–642.

    Article  CAS  Google Scholar 

  • Yuan, C. G., Shi, J. B., He, B., Liu, J. F., Liang, L. N., & Jiang, G. B. (2004). Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environment International, 30(6), 769–783.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Alfonso Martínez, Carlos Lozano, Alexis Trejo, and Estefanía Navarro for their assistance in the field. We also thank Mayra Hernández and Jhoan Gutiérrez for their help in the laboratory. Finally, we also want to thank to an anonymous reviewer, his/her comments help us to improve the quality of the manuscript.

Funding

This study was funded by a grant to G. Horta-Puga (PAPIIT IN114616), and a postdoctoral fellowship to R.A. Cabral-Tena, both from DGAPA, UNAM (Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Horta-Puga.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Table S1

(DOCX 16 kb)

Table S2

(DOCX 13 kb)

Table S4

(DOCX 13 kb)

Table S5

(DOCX 13 kb)

Figure S1

Pluviogram showing the average monthly total precipitation (mm) in the ASB (red line), and the JSB (black line). Data from Climate-Data.Org. (EPS 2660 kb)

Table S3

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabral-Tena, R.A., Córdova, A., López-Galindo, F. et al. Distribution of the bioavailable and total content of copper and lead, in river sediments of the Jamapa-Atoyac fluvial system, Mexico. Environ Monit Assess 191, 214 (2019). https://doi.org/10.1007/s10661-019-7353-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7353-z

Keywords

Navigation