Skip to main content

Advertisement

Log in

Multiparameter optimization system with DCNN in precision agriculture for advanced irrigation planning and scheduling based on soil moisture estimation

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Agriculture is a distinct sector of a country’s economy. In recent years, new patterns have evolved in the agricultural industry. In conjunction with sensor scaling down and precision agriculture, the field of remote sensor networks, such as the wireless sensor network (WSN), was developed. Its major purpose is to make horticultural operations simpler to identify, assess, and manage. This paper uses the proposed DCNN to predict soil moisture and plan irrigation for precision agriculture farmers to reduce water consumption used for cultivation and increase production yield by comparing water content during various stages of plant growth and integrating IoT applications into agriculture. It also optimizes the water level for future irrigation decisions to maintain crop growth and water stability. The data must be served and stored in the form of a grid view, according to Apriori and GRU (gated recurrent unit). Using numerous sensor and parameter modelling methodologies, this system assists in the prediction of irrigation planning based on irrigation needs. The predicted parameters include soil moisture, temperature, and humidity. This observed experimental data supports smart irrigation in crop production with a high yield and little water use. DCNN has a 98.5% experimental result accuracy rate and the MSE value is predicted in DCNN 99.25% of the time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in the manuscript.

Code availability

Not applicable.

References

  • Alfred, R., Obit, J. H., Yee, C. C. P., Haviluddin, H., & Lim, Y. (2021). Towards paddy rice smart farming: a review on big data, machine learning, and rice production tasks. IEEE Access, 9, 50358–50380.

    Article  Google Scholar 

  • Anbarasan, M., Muthu, B. A., Sivaparthipan, C. B., Sundarasekar, R., Kadry, S., Krishnamoorthy, S., Dinesh, R., & Dasel, A. (2019). Detection of flood disaster systems based on IoT, big data, and convolutional deep neural networks. Computer Communications, 150, 150–157. https://doi.org/10.1016/j.comcom.2019.11.022

    Article  Google Scholar 

  • Ang, K. L. M., & Seng, J. K. P. (2021). Big data and machine learning with hyperspectral information in agriculture. IEEE Access, 9, 36699–36718.

    Article  Google Scholar 

  • Bhat, S. A., & Huang, N. F. (2021). Big data and AI revolution in precision agriculture: survey and challenges. IEEE Access, 9, 110209–110222.

    Article  Google Scholar 

  • Campos-Guillén, J., Moreno-Andrade, V., Rico-Rodriguez, M. A., Bañuelos-Hernández, B., Ceja-Bravo, A., Bermeo-Escalona, J., & Cruz-Hernández, A. (2020). The use of big data in the modern biology: the case of agriculture. Intelligent and complex systems in economics and business (pp. 107–115). Cham: Springer.

    Google Scholar 

  • Cravero, A., & Sepúlveda, S. (2021). Use and adaptations of machine learning in big data–applications in real cases in agriculture. Electronics, 10(5), 552.

    Article  Google Scholar 

  • Fathi, M., Haghi Kashani, M., Jameii, S. M., & Mahdipour, E. (2021). Big data analytics in weather forecasting: a systematic review. Archives of Computational Methods in Engineering, 29, 1247–1275.

    Article  Google Scholar 

  • Gutierrez, J., Villa-Medina, J. F., Nieto-Garibay, A., & Porta-Gandara, M. A. (2013). Automated irrigation system using a wireless sensor network and GPRS module. IEEE Transactions on Instrumentation and Measurement, 63(1), 166–176.

    Article  Google Scholar 

  • Hsu, T. C., Yang, H., Chung, Y. C., & Hsu, C. H. (2018). A creative IoT agriculture platform for cloud fog computing. Sustainable Computing: Informatics and Systems, 28, 100285.

    Google Scholar 

  • Kamilaris, A., Kartakoullis, A., & Prenafeta-Boldú, F. X. (2017). A review on the practice of big data analysis in agriculture. Computers and Electronics in Agriculture, 143, 23–37.

    Article  Google Scholar 

  • Khan, R., Ali, I., Zakarya, M., Ahmad, M., Imran, M., & Shoaib, M. (2018). Technology-assisted decision support system for efficient water utilization: A real-time testbed for irrigation using wireless sensor networks. IEEE Access, 6, 25686–25697.

    Article  Google Scholar 

  • Kumar, H., & Menakadevi, T. (2017). A review on big data analytics in the field of agriculture. International Journal of Latest Transactions in Engineering and Science, 1(4), 1–10.

    CAS  Google Scholar 

  • Kumar, M., & Nagar, M. (2017). Big data analytics in agriculture and distribution channel. 2017 International Conference on Computing Methodologies and Communication (ICCMC) (pp. 384–387). IEEE.

    Chapter  Google Scholar 

  • Lan, Y. (2012). Greenhouse precise management system based on production rules. Journal of Agricultural Mechanization Research, 2, 80–83.

    Google Scholar 

  • Li, X., Ma, Z., Zheng, J., Liu, Y., Zhu, L., & Zhou, N. (2020a). An effective edge-assisted data collection approach for critical events in the SDWSN-based agricultural internet of things. Electronics, 9(6), 907.

    Article  Google Scholar 

  • Li, X., Zhu, L., Chu, X., & Fu, H. (2020b). Edge computing-enabled wireless sensor networks for multiple data collection tasks in smart agriculture. Journal of Sensors, 2020, 4398061.

    Article  Google Scholar 

  • McCown, R. L., Carberry, P. S., Dalgliesh, N. P., Foale, M. A., & Hochman, Z. (2012). Farmers use intuition to reinvent analytic decision support for managing seasonal climatic variability. Agricultural Systems, 106(1), 33–45.

    Article  Google Scholar 

  • Ojha, T., Misra, S., & Raghuwanshi, N. S. (2015). Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Computers and Electronics in Agriculture, 118, 66–84.

    Article  Google Scholar 

  • Rao, Z., & Yuan, J. (2021). Data mining and statistics issues of precision and intelligent agriculture based on big data analysis. Acta Agriculture Scandinavica, Section B Soil & Plant Science, 71(9), 870–883.

    Google Scholar 

  • Rawal, S. (2017). IoT-based smart irrigation system. International Journal of Computer Applications, 159(8), 7–11.

    Article  Google Scholar 

  • Razi, Q., & Nath, V. (2019). Design of a smart embedded system for an agricultural update using the internet of things. Nanoelectronics, Circuits and Communication Systems (pp. 373–382). Springer.

    Chapter  Google Scholar 

  • Sarker, M. N. I., Wu, M., Chanthamith, B., Yusufzada, S., Li, D., & Zhang, J. (2019). Big data drove smart agriculture: pathway for sustainable development. 2019 2nd International Conference on Artificial Intelligence and Big Data (ICAIBD) (pp. 60–65). IEEE.

    Chapter  Google Scholar 

  • Saxena, M., & Dutta, S. (2020). Improved the efficiency of IoT in agriculture by introduction optimum energy harvesting in WSN. 2020 International Conference on Innovative Trends in Information Technology (ICITIIT) (pp. 1–5). IEEE.

    Google Scholar 

  • Shah, P., Hiremath, D., & Chaudhary, S. (2016). Big data analytics architecture for the agro advisory system. 2016 IEEE 23rd International Conference on High-Performance Computing Workshops (HiPCW) (pp. 43–49). IEEE.

    Google Scholar 

  • Sharma, R., Kamble, S. S., & Gunasekaran, A. (2018). Big GIS analytics framework for agriculture supply chains: A literature review identifying the current trends and future perspectives. Computers and Electronics in Agriculture, 155, 103–120.

    Article  Google Scholar 

  • Singh, A., Tyagi, A., & Hak, S. (2019). Energy efficient WSN for precision agriculture–using modified zonal stable election protocol. 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN) (pp. 352–356). IEEE.

    Chapter  Google Scholar 

  • Sorensen, C. G., Fountas, S., Nash, E., Pesonen, L., Bochtis, D., Pedersen, S. M., Basso, B., & Blackmore, S. B. (2010). Conceptual model of a future farm management information system. Computers and Electronics in Agriculture, 72(1), 37–47.

    Article  Google Scholar 

  • Su, Y., & Wang, X. (2021). Innovation of agricultural economic management in the process of constructing smart agriculture by big data. Sustainable Computing: Informatics and Systems, 31, 100579.

    Google Scholar 

  • Surendran, D., Shilpa, A., & Sherin, J. (2019). Modern agriculture using wireless sensor network (WSN). 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS) (pp. 515–519). IEEE.

    Google Scholar 

  • Velmurugan, P., Kannagi, A., & Varsha, M. (2021). Superior fuzzy enumeration crop prediction algorithm for big data agriculture applications. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.02.578

    Article  Google Scholar 

  • Wachowiak, M. P., Daniel, F., Walters, J. M. K., Wachowiak-Smolíková, R., & James, A. L. (2017). Visual analytics and remote sensing imagery to support community-based research for precision agriculture in emerging areas. Computers and Electronics in Agriculture, 143, 149–164.

    Article  Google Scholar 

  • Wang, J., Huang, J., Rozelle, S., Huang, Q., & Blanke, A. (2007). Agriculture and groundwater development in northern China: Trends, institutional responses, and policy options. Water Policy, 9(S1), 61–74.

    Article  CAS  Google Scholar 

  • Wang, N., Zhang, N., & Wang, M. (2006). Wireless sensors in agriculture and food industry. Recent development and future perspective. Computers and Electronics in Agriculture, 50(1), 1–14.

    Article  CAS  Google Scholar 

  • Wang, T., Mei, Y., Jia, W., Zheng, X., Wang, G., & Xie, M. (2020). Edge-based differential privacy computing for sensor–cloud systems. Journal of Parallel and Distributed Computing, 136, 75–85.

    Article  Google Scholar 

  • White, B. J., Amrine, D. E., & Larson, R. L. (2018). Big data analytics and precision animal agriculture symposium: Data to decisions. Journal of Animal Science, 96(4), 1531–1539.

    Article  CAS  Google Scholar 

  • White, E. L., Thomasson, J. A., Auvermann, B., Kitchen, N. R., Pierson, L. S., Porter, D., & Werner, F. (2020). Report from the conference, identifying obstacles to applying big data in agriculture. Precision Agriculture, 22(1), 306–315.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Parasuraman Kumar and Anandan Udayakumar are responsible for designing the framework, analyzing the performance, validating the results, and writing the article. Anbarasan Anbarasa Kumar, Kaliaperumal Senthamarai Kannan, and Nallaperumal Krishnan are responsible for collecting the information required for the framework, provision of software, critical review, and administering the process.

Corresponding author

Correspondence to Anandan Udayakumar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Udayakumar, A., Anbarasa Kumar, A. et al. Multiparameter optimization system with DCNN in precision agriculture for advanced irrigation planning and scheduling based on soil moisture estimation. Environ Monit Assess 195, 13 (2023). https://doi.org/10.1007/s10661-022-10529-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10529-3

Keywords

Navigation