Skip to main content
Log in

Mathematical modeling and numerical simulation of wave-front flow on a vertical wall with surfactant effects

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The modeling of thin-layer flow in the presence of surfactant is considered. The classical problem of wave-front flow down a vertical wall, as discussed by Tuck and Schwartz (SIAM Rev 32:453, 1990), is extended to demonstrate the effects of an assumed insoluble surfactant. Results using the thin-layer approximation (“lubrication theory”) are compared with numerical solutions of the full Navier–Stokes problem using a volume-of-fluid method. The surfactant takes the form of either (i) a concentrated clump, or ‘bolus,’ or (ii) an initially uniform distribution. The basic problem is two-dimensional downhill flow from thick to thin wetting layers. If no surfactant is present, or if the surfactant is entirely passive, and if the layers are long, a steadily propagating solution exists. A discrete quantity of surfactant, when deposited on the liquid surface will be transported to the neighbourhood of the wave front. An apparently stable steady-state will ultimately arise. Similar surfactant transport will occur for uniform surfactant, although no steady-state solution is possible then because the quantity of surfactant becomes unbounded. The volume-of-fluid calculations confirm the validity of all the qualitative features revealed by the lubrication analysis. Quantitative discrepancies appear when the evolving free-surface slope or curvature is no longer small, even in the absence of surfactant effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Evans PL, Schwartz LW, Roy RV (2000) A mathematical model for crater defect formation in a drying paint layer. J Colloid Interface Sci 227: 191–205

    Article  Google Scholar 

  2. Landau LD, Lifshitz EM (1959) Fluid mechanics. Pergamon Press, Oxford

    Google Scholar 

  3. Levich VG (1962) Physiochemical hydrodynamics. Prentice-Hall Inc., Englewood Cliffs

    Google Scholar 

  4. Oron A, Davis SH, Bankoff SG (1997) Long-scale evolution of thin liquid films. Rev Mod Phys 69: 931–980

    Article  ADS  Google Scholar 

  5. Moriarty JA, Schwartz LW, Tuck EO (1991) Unsteady spreading of thin liquid films with small surface tension. Phys Fluids A 3: 733–742

    Article  ADS  MATH  Google Scholar 

  6. Gaver DP, Grotberg JB (1990) The dynamics of a localized surfactant on a thin film. J Fluid Mech 213: 127–148

    Article  ADS  MATH  Google Scholar 

  7. De Wit A, Gallez D, Christov CI (1994) Nonlinear evolution equations for thin liquid films with insoluble surfactants. Phys Fluids 6: 3256–3266

    Article  ADS  MATH  Google Scholar 

  8. Shen H, Hartland S (1994) Effect of interfacial concentration gradients on insoluble surfactants on local film-thinning. J Colloid Interface Sci 167: 94–103

    Article  Google Scholar 

  9. Schwartz LW, Weidner DE, Eley RR (1995) An analysis of the effect of surfactant on the leveling behavior of a thin liquid coating layer. Langmuir 11(10): 3690–3693

    Article  Google Scholar 

  10. Schwartz LW, Cairncross RA, Weidner DE (1996) Anomalous behavior during leveling of thin coating layers with surfactant. Phys Fluids 8(7): 1693–1695

    Article  ADS  MATH  Google Scholar 

  11. Naire S, Braun RJ, Snow SA (2001) An insoluble surfactant model for a vertical draining free film with variable surface viscosity. Phys Fluids 13: 2492–2502

    Article  MathSciNet  ADS  Google Scholar 

  12. Schwartz LW, Roy RV, Eley RR, Princen HM (2004) Surfactant-driven motion and splitting of droplets on a substrate. J Eng Math 50: 157–175

    Article  MathSciNet  MATH  Google Scholar 

  13. Edmonstone BD, Matar OK, Craster RV (2004) Flow of surfactant-laden thin films down an inclined plane. J Eng Math 50: 141–156

    Article  MathSciNet  MATH  Google Scholar 

  14. Schwartz LW, Roy RV (1999) Modeling draining flow in mobile and immobile soap films. J Colloid Interface Sci 218: 309–323

    Article  Google Scholar 

  15. Troian SM, Herbolzheimer E, Safran S (1990) Model for the fingering instability of spreading surfactant drops. Phys Rev Lett 65: 333–336

    Article  ADS  Google Scholar 

  16. Angelini TE, Roper M, Kolter R, Weitz DA, Brenner MP (2009) Bacillus subtilis spreads by surfing on waves of surfactant. Proc Natl Acad Sci 106: 18109–18113

    Article  ADS  Google Scholar 

  17. Cassidy KJ, Halpern , Ressler BG, Grotberg JB (1999) Surfactant effects in model airway closure experiments. J Appl Physiol 87: 415–427

    Google Scholar 

  18. Marmur A, Lelah MD (1981) The spreading of aqueous surfactant solutions on glass. Chem Eng Commun 13: 133–143

    Article  Google Scholar 

  19. Zhu S, Miller WG, Scriven LE, Davis HT (1994) Superspreading of water-silicone surfactant on hydrophobic surfaces. Colloids Surf 90: 63–78

    Article  Google Scholar 

  20. Tuck EO, Schwartz LW (1990) A numerical and asymptotic study of some third-order ordinary differential equations relevant to draining and coating flows. SIAM Rev 32(3): 453–469

    Article  MathSciNet  MATH  Google Scholar 

  21. Huh C, Scriven LE (1971) Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J Colloid Interface Sci 35: 85–101

    Article  Google Scholar 

  22. Troian SM, Herbolzheimer E, Safran S, Joanny J (1989) Fingering instabilities of driven spreading films. Europhys Lett 10: 25–30

    Article  ADS  Google Scholar 

  23. Cazabat AM, Heslot F, Troian SM, Carles P (1990) Fingering instability of thin spreading films driven by temperature gradients. Nature 346: 824–826

    Article  ADS  Google Scholar 

  24. Eres MH, Schwartz LW, Roy RV (2000) Fingering phenomena for driven coating films. Phys Fluids 12: 1278–1295

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Warner MRE, Craster RV, Matar OK (2004) Fingering phenomena associated with insoluble surfactant spreading on thin liquid films. J Fluid Mech 510: 169–200

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Edmonstone BD, Matar OK, Craster RV (2005) Surfactant-induced fingering phenomena in thin film flow down an inclined plane. Physica D 209: 62–79

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Matar OK, Craster RV (2009) Dynamics of surfactant-assisted spreading. Soft Matter 5: 3801–3809

    Article  ADS  Google Scholar 

  28. Benney DJ (1966) Long waves on liquid films. J Math Phys 45: 150–155

    MathSciNet  MATH  Google Scholar 

  29. Pozrikidis C (1997) Introduction to theoretical and computational fluid dynamics. Oxford University Press, New York

    MATH  Google Scholar 

  30. Levy R, Shearer M (2006) The motion of a thin liquid film driven by surfactant and gravity. SIAM J Appl Math 66: 1588–1609

    Article  MathSciNet  MATH  Google Scholar 

  31. Levy R, Shearer M, Witelski TP (2007) Gravity-driven thin liquid films with insoluble surfactant: smooth traveling waves. Eur J Appl Math 18: 679–708

    Article  MathSciNet  MATH  Google Scholar 

  32. Rudman M (1998) A volume tracking method for interfacial flows with large density variations. Int J Numer Methods Fluids 28: 357–378

    Article  MATH  Google Scholar 

  33. Youngs DL (1982) Time-dependent multi-material flow with large fluid distortion. In: Morton KW, Baines MJ (eds) Numerical methods for fluid dynamics. Academic Press, New York

    Google Scholar 

  34. Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modelling surface tension. J Comput Phys 100: 335–354

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. James AJ, Lowengrub J (2004) A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant. J Comput Phys 201: 685–722

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Davidson MR, Harvie DJE (2007) Predicting the effect of interfacial flow of insoluble surfactant on the deformation of drops rising in a liquid. ANZIAM J 48: C661–C676

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. W. Schwartz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, L.W., Davidson, M.R. Mathematical modeling and numerical simulation of wave-front flow on a vertical wall with surfactant effects. J Eng Math 70, 307–320 (2011). https://doi.org/10.1007/s10665-010-9429-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-010-9429-1

Keywords

Navigation