Skip to main content
Log in

The V f gene for scab resistance in apple is linked to sub-lethal genes

  • Published:
Euphytica Aims and scope Submit manuscript

An Erratum to this article was published on 30 September 2006

Summary

V f is the most widely used resistance gene in the breeding for scab resistant apple cultivars. Distorted segregation ratios for V f -resistance have frequently been reported. Here we revealed that sub-lethal genes caused the distorted segregation. The inheritance of V f was examined in six progenies by testing linked molecular markers. Three progenies showed distorted segregations that could be explained by three sub-lethal genes (sl1, sl2 and sl3), of which sl1, sl2 were closely linked to V f . The s11 gene was located at about 14 cM from V f and expressed itself only in the presence of another independently segregating sub-lethal gene sl3. Only the double homozygous recessive genotypes (sl1sl1 sl3sl3) were lethal, which occurred at first as dwarf and poor vigour plants during the first three months after germination. The sl2 gene was also linked to V f and its lethality was expressed prior to seed germination and also required the homozygous recessive presence of sl3. The map position of sl3 has not yet been identified. The linkage of V f to sub-lethal genes usually results in a shortage of V f -resistant progenies. But in some exceptional crosses, it will lead to abundance of resistant seedling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alston, F.H. 1976. Dwarfing and lethal genes in apple progenies. Euphytica 25: 505–514.

    Article  Google Scholar 

  • Alston, F.H., K.L. Phillips & K.M. Evans, 2000. A Malus gene list. Acta Hortic. 538: 561–570.

    CAS  Google Scholar 

  • Bénaouf, G., and L. Parisi, 2000. Genetics of host-pathogen relationships between Venturia inaequalis races 6 and 7 and Malus species. Phytopathology 90: 236–242.

    PubMed  Google Scholar 

  • Belfanti, E., E. Silfverberg-Dilworth, S. Tartarini, A. Patocchi, M. Barbieri, J. Zhu, B. A. Vinatzer, L. Gianfranceschi, C.Gessler & S. Sansavini, 2004. The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc. Nat. Acad. Sci. USA. 101: 886–890.

    Google Scholar 

  • Bus, V., C. Ranatunga, S. Gardiner, H. Bassett & E. Rikkeink, 1999. Marker assisted selection for pest and disease resistance in the New Zealand apple breeding programme. Acta Hortic. 538: 541–54.

    Google Scholar 

  • Bus V., A. White, S. Gardiner, R. Weskett, C. Ranatunga, A. Samy, M. Cook & E. Rikkerink, 2002. An Update on Apple Scab Resistance Breeding in New Zealand. Acta Hort. 595: 43–47.

    Google Scholar 

  • Calenge, F, A. Faure, M. Goerre, C. Gebhardt, W.E. Van de Weg, L. Parisi & C.E. Durel, 2004. Quantitative Trait Loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis. Phytopathology 94: 370–379.

    CAS  PubMed  Google Scholar 

  • Cheng, R., A. Saito, Y. Takano & Y. Ukai, 1996. Estimation of the position and effect of a lethal factor locus on a molecular marker linkage map. Theor. Appl. Genet. 93: 494–502.

    CAS  Google Scholar 

  • Conner J.P., S.K. Brown, & N.F. Weeden, 1997. Randomly amplified polymorphic DNA-based genetic linkage maps of three apple cultivars. J. Amer. Soc. Hort. Sci. 122: 350–359.

    CAS  Google Scholar 

  • Crosby, J.A., J. Janick, P.C. Pecknold, S.S. Korban, P.A. O'Conner, S.M. Ries, J. Goffreda & A. Voordeckers, 1992. Breeding apples for scab resistance: 1945-1990. Acta Hortic. 317: 43–70.

    Google Scholar 

  • Durel, C.E., W.E. Van de Weg, J.S. Venisse & L. Parisi, 2000. Localisation of a major gene for apple scab resistance on the European genetic map of the Prima × Fiesta cross. OILB Working Group ‘Integrated Control of Pome Fruit Diseases’. IOBC Bull. 23: 245–248.

    Google Scholar 

  • Gardiner, S.E., H.C.M. Bassett, D.A.M. Noiton, V.G. Bus, M.E. Hofstee, A.G. White, R.D. Ball, R.L.S. Foster & E.H.A. Rikkerink, 1996. A detailed linkage map around an apple scab resistance gene demonstrate the two disease resistance classes both carry the V f gene. Theor. Appl. Genet. 93: 485–493.

    CAS  Google Scholar 

  • Gessler, C. 1992. Scab resistance in apple: minor genes in the V f -resistance. Acta Phytopathol. Entomol. Hung. 27: 257–263.

    Google Scholar 

  • Gianfranceschi, L., B. Koller, N. Seglias, M. Kellerhals & C. Gessler, 1996. Molecular selection in apple resistance to scab caused by Venturia inaequalis, Theor. Appl. Genet. 93: 199–204.

    Article  CAS  Google Scholar 

  • Haymes, K.M. 1996. A DNA mini-prep method suitable for a plant breeding program. Plant Mol. Biol. Rep. 14: 280–284.

    CAS  Google Scholar 

  • Hemmat M., N.F. Weeden & S.K Brown, 2003. Mapping and evaluation of Malus × domestica microsatelites in apple and pear. J. Amer. Soc. Hort. Sci. 128: 515–520.

    CAS  Google Scholar 

  • Hemmat, M., N.F. Weeden, H.S. Aldwinckle & S.K. Brown, 1998. Molecular markers for the scab resistance (V f ) region in apple. J. Am. Soc. Hortic. Sci. 123: 992–996.

    CAS  Google Scholar 

  • Hough, L.F., J. R. Shay & D.F. Dayton, 1953. Apple scab resistance from Malus floribunda Sieb. Proc. Am. Soc. Hortic. Sci. 62: 341–347.

  • King, G.J., S. Tartarini, L. Brown, F. Gennari & S. Sansavini, 1999. Introgression of the V f source of scab resistance and distribution of linked marker alleles within the Malus gene pool. Theor. Appl. Genet. 99: 1039–1046.

    Article  CAS  Google Scholar 

  • Klein, L.G., R.D. Way, & R.C. Lamb, 1961. The inheritance of a lethal factor in apple. Proc. Am. Soc. Hortic. Sci. 77: 50–53.

    Google Scholar 

  • Lamb, R.C. & J.M. Hamilton, 1969. Environmental and genetic factors influencing the expression of resistance to apple scab (Venturia inaequalis Cke Wint.) in apple progenies. J. Am. Soc. Hortic. Sci. 94: 554–557.

    Google Scholar 

  • Lespinasse, Y. 1989. Breeding pome fruits with stable resistance to diseases. Genes, resistance mechanism, present work and prospects. Integrated Control of Pome Fruit Diseases, IOBC Bull. Vol. II: 100–115.

    Google Scholar 

  • Liebhard, R., B. Koller, L. Gianfranceschi, C. Gessler, 2003. Creating a saturated reference map for the apple (Malus × domestica Borkh.) genome. Theor. Appl. Genet. 106: 1497–1508.

    PubMed  CAS  Google Scholar 

  • Maliepaard, C., F.H. Alston, G. Van Arkel, L.M. Brown, E. Chevreau, F. Dunemann, K.M. Evans, S. Gardiner, P. Guilford, A.W. van Heusden, J. Janse, F. Laurens, J.R. Lynn, A.G. Manganaris, A.P.M. Den Nijs, N. Periam, E. Rikkerink, P. Roche, C. Ryder, S. Sansavini, H. Schmidt, S.Tartarini, J.J. Verhaegh, M. Vrielink-Van Ginkel & King, G.J. 1998. Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor. Appl. Genet. 97: 60–73.

    Article  CAS  Google Scholar 

  • Patocchi, A., B.A. Vinatzer, L. Gianfranceschi, S. Tartarini, H.B. Zhang, S. Sansavini & C. Gessler, 1999. Construction of a 550 kb BAC contig spanning the genomic region containing the apple scab resistance gene V f . Mol. Gen. Genet. 262: 884–891.

    Article  PubMed  CAS  Google Scholar 

  • Rousselle, G.L., E.B. William & L.F. Hough, 1974. Modification of the level of resistance to apple scab from the V f gene. Proc XIXth Intern Hortic Congr, Warsaw, ISHS, Vol. III: 19–26.

  • Søgaard, B. & P. Von Wettstein-Knowles, 1987. Barley: Genes and chromosomes. Carlsberg Res. Communications 52: 123–196.

    Article  Google Scholar 

  • Tartarini, S. 1996. RAPD markers linked to the V f gene for scab resistance in apple. Theor. Appl. Genet. 92: 803–810.

    Article  CAS  Google Scholar 

  • Tartarini, S., L.Gianfranceschi, S. Sansavini & C. Gessler, 1999. Development of reliable PCR markers for the selection of the V f gene conferring scab resistance in apple. Plant Breed. 118: 183–186.

    Article  Google Scholar 

  • Vinatzer, B.A., A. Patocchi, L. Gianfranceschi, S. Tartarini, H.B. Zhang, C. Gessler & S. Sansavini, 2001. Apple contains receptor-like Genes homologous to the Cladosporium fulvum resistance gene family of tomato with a cluster of genes cosegregating with V f apple scab resistance. Amer. Phytopathol. Soc. 14: 508–515.

    CAS  Google Scholar 

  • Way R.D., R.C. Lamb, Charlotte Pratt & J.N. Cummins, 1976. Pale Green Lethal gene in apple clones. J. Amer. Soc. Hort. Sci. 101: 679–684.

    Google Scholar 

  • Williams, E.B. & J. Kuc, 1969. Resistance in Malus to Venturia inaequalis. Annu. Rev. Phytopathol. 7: 223–246.

    Article  CAS  Google Scholar 

  • Xu, M.L. & S.S. Korban, 2000. Saturation mapping of the apple scab resistance gene V f using AFLP markers. Theor. Appl. Genet. 101: 844–851.

    Article  CAS  Google Scholar 

  • Xu, M.L., E. Huaracha & S.S. Korban, 2001. Development of sequence-characterised amplified regions (SCARs) from amplified fragment length polymorphism (AFLP) markers tightly linked to the V f gene in apple. Genome 44: 63–70.

    Article  PubMed  CAS  Google Scholar 

  • Yang, H. & J. Krüger, 1994. Identification of a RAPD marker linked to the V f gene for scab resistance in apples. Euphytica 77: 83–87.

    Google Scholar 

  • Yang, H. & S.S. Korban, 1996. Screening apples for opD20/600 using sequence-specific primers. Theor. Appl. Genet. 92: 263–266.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. E. van de Weg.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10681-006-9267-4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Z.S., van de Weg, W.E. The V f gene for scab resistance in apple is linked to sub-lethal genes. Euphytica 151, 123–132 (2006). https://doi.org/10.1007/s10681-005-9082-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-005-9082-3

Keywords

Navigation