Skip to main content
Log in

Pre-dispersal seed predation reduces the reproductive compensatory advantage of thrum individuals in Erythroxylum havanense (Erythroxylaceae)

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Male-sterility mutations in hermaphroditic species represent the first step in the evolution of gender specialization. Male-sterile individuals commonly compensate the loss of the male function by increasing the number or quality of seeds. Because the magnitude of compensation determines the maintenance of females within populations and the evolution of sexual specialization, plant-animal interactions may affect these evolutionary processes if animals are sensitive to such reproductive asymmetries. Here we explore the effect of seed predation on the reproductive compensation of Erythroxylum havanense, a distylous shrub with morph-biased partial male sterility, during two consecutive years. Seed predation reduced the compensatory advantage of thrums in 1987, but not in 1988. Annual differences in the intensity of seed predation seem to be accounted for differences in the onset and synchrony of flowering. Thus, although seed predators may reduce the compensatory advantage of thrums, their impact is modulated by the environmental cues triggering flowering and insect emergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aiskainen E, Mutikainen P (2005) Preferences of pollinators and herbivores in gynodioecious Geranium sylvaticum. Ann Bot 95:879–886

    Article  Google Scholar 

  • Ashman TL (2002) The role of herbivores in the evolution of separate sexes from hermaphroditism. Ecology 83:1175–1184

    Article  Google Scholar 

  • Ashman TL, Penet L (2007) Direct and indirect effects of a sex-biased antagonist on male and female fertility: consequences for reproductive trait evolution in a gender-dimorphic plant. Am Nat 169:595–608

    Article  PubMed  Google Scholar 

  • Ashman TL, Cole DH, Bradburn M (2004) Sex-differential resistance and tolerance to herbivory in a gynodioecious wild strawberry. Ecology 85:2550–2559

    Article  Google Scholar 

  • Augspurger CK (1981) Reproductive synchrony of a tropical shrub: experimental studies on effects of pollinators and seed predators in Hybanthus prunifolius (Violaceae). Ecology 62:775–778

    Article  Google Scholar 

  • Avila-Sakar G, Domínguez AC (2000) Parental effects and gender specialization in a tropical heterostylous shrub. Evolution 54:866–877

    PubMed  CAS  Google Scholar 

  • Barrett SCH (2002) The evolution of plant sexual diversity. Nat Rev Genet 3:274–284

    Article  PubMed  CAS  Google Scholar 

  • Bell WJ (1990) Searching behaviour. The behavioural ecology of finding resources. Chapman and Hall, Cambridge

    Google Scholar 

  • Brienen RJW, Zuidema PA (2005) Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis. Oecologia 146:1–12

    Article  PubMed  Google Scholar 

  • Brody AK, Mitchell RJ (1997) Effects of experimental manipulation of inflorescence size on pollination and pre-dispersal seed predation in the hummingbird-pollinated plant Ipomopsis aggregata. Oecologia 110:86–93

    Article  Google Scholar 

  • Bullock SH, Solís-Magallanes JA (1990) Phenology of canopy trees of a tropical deciduous forest. Biotropica 22:22–35

    Article  Google Scholar 

  • Charlesworth D (1981) A further study of the problem of the maintenance of females in gynodioecious species. Heredity 46:27–39

    Article  Google Scholar 

  • Charlesworth D (1999) Theories of the evolution of dioecy. In: Geber MA, Dawson TE, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer Verlag, Berlin, pp 33–60

    Google Scholar 

  • Charlesworth B, Charlesworth D (1978) A model for the evolution of dioecy and gynodioecy. Am Nat 112: 975–997

    Article  Google Scholar 

  • Cole DH, Ashman TL (2005) Sexes show differential tolerance to spittlebug damage and consequences of damage for multi-species interactions. Am J Bot 92:1708–1713

    Article  Google Scholar 

  • Collin CL, Pennings PS, Rueffler et al (2002) Natural enemies and sex: how seed predators and pathogens contribute to sex-differential reproductive success in a gynodioecious plant. Oecologia 131:94–102

    Article  Google Scholar 

  • Cuevas E, Molina-Freaner F, Eguiarte LE, Domínguez CA (2005) Patterns of male sterility within and among populations of the distylous shrub Erythroxylum havanense (Erythroxilaceae). Plant Ecol 176:234–242

    Article  Google Scholar 

  • Del-Carlo S, Buzato S (2006) Male sterility and reproductive output in distylous Erythroxylum suberosum (Erythroxylaceae). Biol J Linn Soc London 88:465–474

    Article  Google Scholar 

  • Dellaporta SL, Calderon-Urrea A (1993) Sex determination in flowering plants. Plant Cell 5:1241–1251

    Article  PubMed  CAS  Google Scholar 

  • Delph LF, Bailey MA, Marr DL (1999) Seed provisioning in gynodioecious Silene acaulis (Caryophyllaceae). Am J Bot 86:140–144

    Article  Google Scholar 

  • Domínguez CA (1990) Consecuencias ecológicas y evolutivas del patrón de floración sincrónico y masivo de Erythroxylum havanense Jacq. (Erythroxylaceae). Dissertation, Universidad Nacional Autónoma de Mexico, Mexico

  • Domínguez CA (1995) Genetic conflicts of interest in plants. Trends Ecol Evol 10:412–416

    Article  Google Scholar 

  • Domínguez CA, Dirzo R (1995) Rainfall and flowering synchrony in a tropical shrub: variable selection on the flowering time of Erythroxylum havanense. Evol Ecol 9:204–216

    Article  Google Scholar 

  • Domínguez CA, Avila-Sakar G, Vázquez-Santana S et al. (1997) Morph-biased male sterility in the tropical distylous shrub Erythroxylum havanense (Erythroxylaceae). Am J Bot 84:626–632

    Article  Google Scholar 

  • Frank SA (1989) The evolutionary dynamics of cytoplasmatic male sterility. Am Nat 133:345–376

    Article  Google Scholar 

  • Garcia-Oliva F, Camou A, Maass JM (2002) El clima de la región central de la costa del pacífico mexicano. In: Nogüera Aldrete AN, Vega-Rivera JH, García Aldrete AN, Quesada-Avendaño M (eds) Historia natural de Chamela. Instituto de Biología, UNAM, Mexico City, pp 3–10

    Google Scholar 

  • Geber MA (1999) Theories of the evolution of sexual dimorphism. In: Geber MA, Dawson TE, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer, New York, pp 97–122

    Google Scholar 

  • Gentry AH (1974) Flowering phenology and diversity in tropical Bignoniaceae. Biotropica 6:64–68

    Article  Google Scholar 

  • Gouyon PH, Couvet D (1987) A conflict between two sexes, females and hermaphrodites. In: Stearns SC (ed) The evolution of sex and its consequences. Birkhäuser, Basel, pp 245–261

    Google Scholar 

  • Gouyon PH, Vichot F, Van Damme JMM (1991) Nuclear-cytoplasmatic male sterility: single-point equilibria vs. limit cycles. Am Nat 137:498–514

    Article  Google Scholar 

  • Graff A (1999). Population sex structure and reproductive fitness in gynodioecious Sidalcea malviflora malviflora (Malvaceae). Evolution 59:1714–1722

    Article  Google Scholar 

  • Gryj EO, Domínguez CA (1996) Fruit removal and postdispersal survivorship in the tropical dry forest shrub Erythroxylum havanense: ecological and evolutionary implications. Oecologia 108:368–374

    Google Scholar 

  • Janzen DH (1971) Seed predation by animals. Annu Rev Ecol Syst 2:465–492

    Article  Google Scholar 

  • Janzen DH (1980) Specificity of seed-attacking beetles in a Costa Rican deciduous forest. J Ecol 68:929–952

    Article  Google Scholar 

  • Johnson DM, Liebhold AM, Bjornstad ON, McManus ML (2005) Circumpolar variation in periodicity and synchrony among gypsy moth populations. J Anim Ecol 74:882–892

    Article  Google Scholar 

  • Jordano P (1987) Avian fruit removal: effects of fruit variation, crop size and insect damage. Ecology 68:1711–1723

    Article  Google Scholar 

  • Kelly D, Sork VL (2002) Mast seeding in perennial plants: Why, how, where? Annu Rev Ecol Syst 33:427–447

    Article  Google Scholar 

  • Koelewijin HP, Van Damme JMM (1995) Genetics of male sterility in gynodioecious Plantago coronopus I. Cytoplasmic variation. Genetics 139:1749–1758

    Google Scholar 

  • Leege LM, Wolfe M (2002) Do floral herbivores respond to variation in flower characteristics in Gelsemium semprevivrens (Longaniaceae), a distylous vine? Am J Bot 89:1270–1274

    Article  Google Scholar 

  • Lewis D (1941) Male sterility in natural populations of hermaphrodite plants. New Phytol 40:56–63

    Article  Google Scholar 

  • Lott EJ (1987) Floristic diversity and structure of upland and arroyo forests of coastal Jalisco. Biotropica 19:228–232

    Article  Google Scholar 

  • Naki A, Kato M (1999) Pollination system and evolution of dioecy from distyly in Mussaenda parviflora (Rubiaceae). Plant Species Biol 14:217–227

    Article  Google Scholar 

  • Marshal M, Ganders FR (2001) Sex-biased seed predation and the maintenance of females in a gynodioecious plant. Am J Bot 88:1437–1443

    Article  Google Scholar 

  • Maurice S, Charlesworth D, Desfeux C, Couvet D, Gouyon PH (1993) The evolution of gender in hermaphrodites of gynodioecious populations with nucleo-cytoplasmic male sterility. Proc R Soc London B 251:253–261

    Article  Google Scholar 

  • Maurice S, Belhassen E, Couvet D, Gouyon PH (1994) Evolution of dioecy: can nuclear-cytoplasmatic interactions select for maleness? Heredity 73:346–359

    Article  PubMed  Google Scholar 

  • Ornelas JF, Gonzáles C, Jiménez L, Lara C, Martínez AJ (2004) Reproductive ecology of distylous Palicourea padifolia (Rubiaceae) in a tropical montane cloud forest. II. Attracting and rewarding mutualistic and antagonistic visitors. Am J Bot 91:1061–1069

    Article  Google Scholar 

  • Pailler T, Humeau L, Thompson JD (1998) Distyly and heteromorphic incompatibility in oceanic island species of Erythroxylum (Erythroxylaceae). Plant Syst Evol 213:187–198

    Article  Google Scholar 

  • Pannell JR, Verdú M (2006) The evolution of gender specialization from dimorphic hermaphroditism: paths from heterodichogamy to gynodioecy and androecy. Evolution 60:660–673

    Article  PubMed  Google Scholar 

  • Ramsey M, Vaughton G (2002) Maintenance of gynodioecy in Wurmbea biglandulosa (Colchicaceae): gender differences in seed production and progeny success. Plant Syst Evol 232:189–200

    Article  Google Scholar 

  • Reich PB (1995) Phenology of tropical forests – patterns, causes and consequences. Can J Bot 73:164–174

    Article  Google Scholar 

  • Rosas LF, Pérez-Alquicira J, Domínguez CA (2005) Environmentally induced variation in fecundity compensation in the morph-biased male-sterile distylous shrub Erythroxylum havanense (Erythroxylaceae). Am J Bot 92:116–122

    Article  Google Scholar 

  • Ross MD, Gregorious HR (1985) Selection with gene-cytoplasm interactions. II. Maintenance of gynodioecy. Genetics 109:427–439

    PubMed  Google Scholar 

  • SAS Institute (1999) SAS version 8.00. Cary, North Carolina, USA

    Google Scholar 

  • SAS Institute (2001) JMP. Version 4.0.4. Cary, North Carolina, USA

    Google Scholar 

  • Schultz ST (1994) Nucelo-cytoplasmatic male sterility and alternative routes to dioecy. Evolution 48:1933–1945

    Article  Google Scholar 

  • Shykoff JA, Kolokotronis SO, Collin SL et al (2003) Effects of male sterility on reproductive traits in gynodioecious plants: a meta-analysis. Oecologia 135:1–9

    PubMed  Google Scholar 

  • Stokes ME, Davis CS, Koch GG (2001) Categorical data analysis using the SAS system. SAS Institute, Cary, North Carolina, USA

    Google Scholar 

  • Strauss SY, Irwin RE (2004) Ecological and evolutionary consequences of multispecies plant-animal interactions. Annu Rev Ecol Syst 35:435–466

    Article  Google Scholar 

  • Taylor DR, McCauley D, Trimble S (1999) Colonization success of females and hermaphrodites in the gynodioecious plant Silene vulgaris. Evolution 55:745–751

    Article  Google Scholar 

  • Uno GE (1982) Comparative reproductive biology of hermaphrodite and male-sterile Iris douglasiana Herb. (Iridaceae). Am J Bot 69: 818–823

    Article  Google Scholar 

  • Williams HL, Fenster CB (1998) Ecological and genetic factors contributing to the low frequency of male sterility in Chamaecrista fasciculata (Fabaceae). Am J Bot 85:1243–1250

    Article  Google Scholar 

  • Zimmerman M (1980). Reproduction in Polemonium: Pre-dispersal seed predation. Ecology 61:502–506

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank María del Carmen Vázquez, Germán Ávila-Sakar, Rubén Pérez-Ishiwara and Gustavo Verduzco for their assistance in the field. They also thank Juan Fornoni for its valuable comments to improve previous versions of this manuscript. This research was supported by grants from UNAM and CONACyT, Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina Boege.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boege, K., Domínguez, C.A. Pre-dispersal seed predation reduces the reproductive compensatory advantage of thrum individuals in Erythroxylum havanense (Erythroxylaceae). Evol Ecol 22, 675–687 (2008). https://doi.org/10.1007/s10682-007-9190-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-007-9190-8

Keywords

Navigation