Skip to main content
Log in

Using ISS telescopes for electromagnetic follow-up of gravitational wave detections of NS-NS and NS-BH mergers

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

The International Space Station offers a unique platform for rapid and inexpensive deployment of space telescopes. A scientific opportunity of great potential later this decade is the use of telescopes for the electromagnetic follow-up of ground-based gravitational wave detections of neutron star and black hole mergers. We describe this possibility for OpTIIX, an ISS technology demonstration of a 1.5 m diffraction limited optical telescope assembled in space, and ISS-Lobster, a wide-field imaging X-ray telescope now under study as a potential NASA mission. Both telescopes will be mounted on pointing platforms, allowing rapid positioning to the source of a gravitational wave event. Electromagnetic follow-up rates of several per year appear likely, offering a wealth of complementary science on the mergers of black holes and neutron stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://www.nasa.gov/mission_pages/station/research/benefits

  2. Advanced Virgo documentation and notes https://wwwcascina.virgo.infn.it/advirgo/docs.html

  3. The sensitivity improvement from requiring an EM coincidence depends on both the gravitational-wave background rejection factor, and the empirical shape of the background about the threshold of interest. The factor of 1.5 used in this calculation is consistent with a factor of 10\(^{7}\) GW background rejection from the requirement of a prompt short gamma-ray coincidence within 5 sec and X-ray afterglow within 100 deg\(^{2}\), and a GW background distributed approximately exponentially with rate \(\sim \) 100\(^{-\text {SNR}}\) about SNR=10 (e.g. the two-detector NS/NS background in [4], Fig. 3).

  4. http://www.heasarc.nasa.gov/Tools/w3pimms.html

References

  1. Aasi, J., LIGO Scientific Collaboration, Virgo Collaboration: LIGO-P1200087, VIR-0288A-12, arXiv:1304.0670, (2013)

  2. Abadie, J., LIGO Scientific Collaboration: A&A 541, A155 (2012)

    Article  Google Scholar 

  3. Abadie, J., LIGO Scientific Collaboration: A&A 539, A124 (2012)

    Article  ADS  Google Scholar 

  4. Abadie, J., LIGO Scientific Collaboration: Phys. Rev. D 85, 082002 (2012)

    Article  ADS  Google Scholar 

  5. Abadie, J., LIGO Scientific Collaboration: Class. Quantum Grav. 27, 173001 (2010)

    Article  ADS  Google Scholar 

  6. Abbott, B., LIGO Scientific Collaboration: Rep. Prog. Phys. 72, 076901 (2009)

    Article  ADS  Google Scholar 

  7. Abbott, B., LIGO Scientific Collaboration: Nucl. Instrum. Meth. A 517, 154 (2004)

    Article  ADS  Google Scholar 

  8. Accadia, T.: Class. Quantum Grav. 28, 114002 (2011)

    Article  ADS  Google Scholar 

  9. Aurière, M.: A&A 109, 301 (1982)

    ADS  Google Scholar 

  10. Barthelmy, S., Barbie, L., Cummings, J., et al.: Space Sci. Rev. 120, 143–164 (2005)

    Article  ADS  Google Scholar 

  11. Black, J., Brunton, A., Bannister, N., et al.: Nucl. Instrum. Meth. A 513, 123 (2003)

    Article  ADS  Google Scholar 

  12. Bloom, J., Prochaska, J., Pooley, D., et al.: ApJ 638, 354 (2006)

    Article  ADS  Google Scholar 

  13. Coward, D., Howell, E., Piran, T., et al.: MNRAS 425, 1365 (2012)

    Google Scholar 

  14. Dalal, N., Holz, D., Hughes, S.: Phys. Rev. D 74, 063006 (2006)

    Article  ADS  Google Scholar 

  15. Fairhurst, S.: Class. Quantum Grav. 28, 105021 (2011)

    Article  ADS  Google Scholar 

  16. Gehrels, N., Riuz, E., Fox, D.: ARA&A 47, 567 (2009)

    Article  ADS  Google Scholar 

  17. Greiner, J., Hartmann, D., Voges, W., et al.: A&A 353, 998 (2000)

    ADS  Google Scholar 

  18. Grote, H., LIGO Scientific Collaboration: Class. Quantum Grav. 27, 084003 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  19. Guetta, D., Piran, T.: A&A 453, 823 (2006)

    Article  ADS  Google Scholar 

  20. Harry, G., for the LIGO Scientific Collaboration: Class. Quantum Grav. 27, 084006 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  21. Hughes, S., Holz, D.: Class. Quantum Grav. 20, S65 (2003)

    Article  ADS  MATH  Google Scholar 

  22. Kanner, J., Baker, J., Blackburn, L., Camp, J., Mooley, K., Mushutsky, R., Ptak, A.: arXiv:0903.0218, in prep. (2013)

  23. Kanner, J., Huard, T., Marka, S., et al.: Class. Quantum Grav. 25, 184034 (2008)

    Article  ADS  Google Scholar 

  24. Kulkarni, S., Kasliwal, M. arXiv:0903.0218 (2009)

  25. Leonhardt, V., Camp, J.: Space Telescopes and Instrumentation I. Proceedings of SPIE 6265, 62652M (2006)

    Article  ADS  Google Scholar 

  26. Matsuoka, M., Suzuki, M., Kawasaki, K.: Proceedings of X-ray Astronomy 2009. AIP Conference Proceedings 1248, 531–536 (2010)

    Article  ADS  Google Scholar 

  27. Metzger, B., Kaplan, D., Berger, E. ApJ 764, 149 (2013)

    Article  ADS  Google Scholar 

  28. Metzger, B., Berger, E. ApJ 746, 48 (2012)

    Article  ADS  Google Scholar 

  29. Metzger B., Penendo, G., Darbha, S. MNRAS 2650, 406 (2010)

    Google Scholar 

  30. Metzger, B., Quataert, E., Thompson, T.: MNRAS 385, 1455 (2008)

    Article  ADS  Google Scholar 

  31. Nissanke, S., Kasliwal, M., Georgieva, A.: Apj 767, 124 (2013)

    Article  ADS  Google Scholar 

  32. Numata, K., Camp, J., Krainak, M.: Optics Express 18, 22781 (2010)

    Article  ADS  Google Scholar 

  33. Postman, M., Sparks, W., Liu, F.: Proceedings of SPIE, 8442-63, in press (2012)

  34. Sathyaprakash, B., Fairhurst, S., Schutz, B.: LIGO-T1200219 (2012)

  35. Somiya, K., for the KAGRA Collaboration: Class. Quantum Grav. 29, 124007 (2012)

    Article  ADS  Google Scholar 

  36. Veitch, J., Vecchio, A.: Phys. Rev. D 81, 062003 (2010)

    Article  ADS  Google Scholar 

  37. Voges, W.: A&A, 349, 389–405 (1999)

    ADS  Google Scholar 

  38. White, D., Daw, E., Dhillon, V.: Class. Quantum Grav. 28, 085016 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  39. Zhang, B.: ApJ 763, L22 (2013)

    Article  ADS  Google Scholar 

  40. Zhao, F., Rao, S., Ksenszov, A., et al: NASA technical report, http://hdl.handle.net/2014/40796, (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Blackburn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camp, J., Barthelmy, S., Blackburn, L. et al. Using ISS telescopes for electromagnetic follow-up of gravitational wave detections of NS-NS and NS-BH mergers. Exp Astron 36, 505–522 (2013). https://doi.org/10.1007/s10686-013-9343-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-013-9343-4

Keywords

Navigation