Skip to main content
Log in

MVN experiment – All sky monitor for measuring cosmic X-ray background of the universe onboard the ISS

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

The article describes the MVN experiment (MVN – Monitor Vsego Neba in Russian transliteration) – All Sky Monitor onboard the ISS, which will start in 2021. The main scientific task of the experiment is to measure the cosmic X-ray background in energy range of 6 – 70 keV with unprecedented high absolute and spectral accuracy (about 1%). To reach this goal, Space Research Institute of the Russian Academy of Sciences has developed scientific payload called MVN. The main instrument of MVN is the SPIN-X1-MVN X-ray monitor, which is equipped with four CdTe based semiconductor detectors. The X-ray monitor will be mounted on the external surface of the ISS with zenith orientation. The structure of the monitor including the key systems (detectors, gears, thermal control system) is considered. Measuring of the cosmic X-ray background is carried out by the aperture modulation method described in detail in this article. Also we describe an optimal algorithm of the obtained in experiment data filtering, which will provide us with highest quality of the CXB measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Giacconi, R., Gursky, H., Paolini, F., Rossi, B.: Evidence for X rays from sources outside the Solar system. Phys. Rev. Lett. 9(11), 439–443 (1962)

    Article  ADS  Google Scholar 

  2. Giacconi, R., et al.: A high-sensitivity X-ray survey using the Einstein Observatory and the discrete source contribution to the extragalactic X-ray background. Astrophysical Journal Letters 234, L1–L7 (1979)

    Article  ADS  Google Scholar 

  3. Ueda, Y., et al.: Toward the standard population synthesis model of the x-ray background: evolution of x-ray luminosity and absorption functions of active galactic nuclei including Compton-thick populations. The Astrophysical Journal, 786. 104 (28pp), 2014. https://doi.org/10.1088/0004-637X/786/2/104

  4. Gilli, R.: The cosmic X-ray background: abundance and evolution of hidden black holes. Mem.Soc.Ast.It. 84, 647–652 (2013)

    ADS  Google Scholar 

  5. Mazets, E.P., et al.: Diffuse cosmic gamma-ray background in the 28 keV-4.1 MeV range from Kosmos 461 observations. Astrophys. Space Sci. 33, 347–357 (1975)

    ADS  Google Scholar 

  6. Kinzer, R.L., et al.: Diffuse Cosmic Gamma Radiation Measured by HEAO 1. Astrophys. J. 475, 361 (1997)

    Article  ADS  Google Scholar 

  7. Churazov, E., et al.: INTEGRAL observations of the cosmic X-ray background in the 5–100 keV range via occultation by the Earth. Astron. Astrophys. 467(2), 529–540 (2007)

    Article  ADS  Google Scholar 

  8. Kirsch, M.G.F., Briel U.G., Burrows, D. et al. “Crab: the standart x-ray candle with all (modern) x-ray satellites”, Proc. SPIE 5898, UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XIV, 589803 (18 August 2005). https://doi.org/10.1117/12.616893.

  9. Revnivtsev, M.G.: Measurements of the cosmic X-ray background of the Universe and the MVN experiment. Astron. Lett. 40(11), 667–690 (2014). https://doi.org/10.1134/S106377371411005X

    Article  ADS  Google Scholar 

  10. The Russian segment of the ISS. User guide, [online], https://www.energia.ru/ru/iss/researches/iss_rs_guide.pdf, 2016

  11. Sugizaki, M., et al.: In-Orbit Performance of MAXI Gas Slit Camera (GSC) on ISS. Publ. Astron. Soc. Japan 63, S635–S644 (2011)

    Article  Google Scholar 

  12. Vette, J.I. (1991) The AE-8 Trapped Electron Model Environment, NSSDC-91–24, NASA-GSFC

  13. Sawyer, D.M. and Vette, J.I. (1976) AP-8 Trapped Proton Environment for Solar Maximum and Solar Minimum, NSSDC-76–06, NASA-GSFC

  14. Murakami, H., Kitsunezuka, M., Ozaki, M., Dotani, T., Anada, T.: Origins of the instrumental background of the X-ray CCD camera in space studied with Monte Carlo simulation. Proc. SPIE 6266, Space Telescopes and Instrumentation II: Ultraviolet to Gamma Ray, 62662Y (15 June 2006)

  15. Gruber, D.E., Matteson, J.L., Peterson, L.E., Jung, G.V.: The spectrum of diffuse cosmic hard x-rays measured with HEAO-1. Astrophys J 520, 124–129 (1999)

    Article  ADS  Google Scholar 

  16. X-Ray Mass Attenuation Coefficients, [online], https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients, 2020

  17. Revnivtsev, M., Sazonov, S., Churazov, E., Forman, W., Vikhlinin, A., Sunyaev, R.: Discrete sources as the origin of the Galactic X-ray ridge emission. Nature 458, 1142–1144 (2009). https://doi.org/10.1038/nature07946

    Article  ADS  Google Scholar 

  18. Krivonos, R., Revnivtsev, M., Churazov, E., Sazonov, S., Grebenev, S., Sunyaev, R.: Hard X-ray emission from the Galactic ridge. Astron. Astrophys. 463(3), 957–967 (2007)

    Article  ADS  Google Scholar 

  19. Kendrah, D.: Murphy and Tahir Yaqoob “An X-ray spectral model for Compton-thick toroidal reprocessors.” Mon. Not. R. Astron Soc. 397, 1549–1562 (2009)

  20. Doroshenko, V., Santangelo, A., Kreykenbohm, I., Doroshenko, R.: The hard X-ray emission of X Persei. A&A 540, L1 (2012). https://doi.org/10.1051/0004-6361/201218878

    Article  ADS  Google Scholar 

  21. Serbinov, D.V., Semena, N.P., Pavlinsky, M.N.: Opposite Radiators Used for Thermostabilizing of X-Ray Detectors of the All-Sky Monitor to be Installed on the ISS. J. Eng. Thermophys. 26(3), 366–376 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the grant 14.W03.31.0021 of the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Serbinov.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serbinov, D.V., Pavlinsky, M.N., Semena, A.N. et al. MVN experiment – All sky monitor for measuring cosmic X-ray background of the universe onboard the ISS. Exp Astron 51, 493–514 (2021). https://doi.org/10.1007/s10686-021-09699-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-021-09699-8

Keywords

Navigation