Skip to main content
Log in

Risk of colorectal cancer for people with a mutation in both a MUTYH and a DNA mismatch repair gene

  • Original Article
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

The base excision repair protein, MUTYH, functionally interacts with the DNA mismatch repair (MMR) system. As genetic testing moves from testing one gene at a time, to gene panel and whole exome next generation sequencing approaches, understandin g the risk associated with co-existence of germline mutations in these genes will be important for clinical interpretation and management. From the Colon Cancer Family Registry, we identified 10 carriers who had both a MUTYH mutation (6 with c.1187G>A p.(Gly396Asp), 3 with c.821G>A p.(Arg274Gln), and 1 with c.536A>G p.(Tyr179Cys)) and a MMR gene mutation (3 in MLH1, 6 in MSH2, and 1 in PMS2), 375 carriers of a single (monoallelic) MUTYH mutation alone, and 469 carriers of a MMR gene mutation alone. Of the 10 carriers of both gene mutations, 8 were diagnosed with colorectal cancer. Using a weighted cohort analysis, we estimated that risk of colorectal cancer for carriers of both a MUTYH and a MMR gene mutation was substantially higher than that for carriers of a MUTYH mutation alone [hazard ratio (HR) 21.5, 95 % confidence interval (CI) 9.19–50.1; p < 0.001], but not different from that for carriers of a MMR gene mutation alone (HR 1.94, 95 % CI 0.63–5.99; p = 0.25). Within the limited power of this study, there was no evidence that a monoallelic MUTYH gene mutation confers additional risk of colorectal cancer for carriers of a MMR gene mutation alone. Our finding suggests MUTYH mutation testing in MMR gene mutation carriers is not clinically informative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Win AK, Young JP, Lindor NM et al (2012) Colorectal and other cancer risks for carriers and noncarriers from families with a DNA mismatch repair gene mutation: a prospective cohort study. J Clin Oncol 30(9):958–964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Lynch HT, de la Chapelle A (2003) Hereditary colorectal cancer. N Engl J Med 348(10):919–932

    Article  CAS  PubMed  Google Scholar 

  3. Win AK, Cleary SP, Dowty JG et al (2011) Cancer risks for monoallelic MUTYH mutation carriers with a family history of colorectal cancer. Int J Cancer 129(9):2256–2262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Win AK, Dowty JG, Cleary SP et al (2014) Risk of colorectal cancer for carriers of mutations in MUTYH, with and without a family history of cancer. Gastroenterology 146(5):1208–1211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Jenkins MA, Croitoru ME, Monga N et al (2006) Risk of colorectal cancer in monoallelic and biallelic carriers of MYH mutations: a population-based case-family study. Cancer Epidemiol Biomarkers Prev 15(2):312–314

    Article  CAS  PubMed  Google Scholar 

  6. Cleary SP, Cotterchio M, Jenkins MA et al (2009) Germline MutY human homologue mutations and colorectal cancer: a multisite case–control study. Gastroenterology 136(4):1251–1260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Kruger S, Engel C, Bier A et al (2007) The additive effect of p53 Arg72Pro and RNASEL Arg462Gln genotypes on age of disease onset in Lynch syndrome patients with pathogenic germline mutations in MSH2 or MLH1. Cancer Lett 252(1):55–64

    Article  PubMed  Google Scholar 

  8. Maillet P, Chappuis PO, Vaudan G et al (2000) A polymorphism in the ATM gene modulates the penetrance of hereditary non-polyposis colorectal cancer. Int J Cancer 88(6):928–931

    Article  CAS  PubMed  Google Scholar 

  9. Moisio AL, Sistonen P, Mecklin JP, Jarvinen H, Peltomaki P (1998) Genetic polymorphisms in carcinogen metabolism and their association to hereditary nonpolyposis colon cancer. Gastroenterology 115(6):1387–1394

    Article  CAS  PubMed  Google Scholar 

  10. Campbell PT, Edwards L, McLaughlin JR, Green J, Younghusband HB, Woods MO (2007) Cytochrome P450 17A1 and catechol O-methyltransferase polymorphisms and age at Lynch syndrome colon cancer onset in Newfoundland. Clin Cancer Res 13(13):3783–3788

    Article  CAS  PubMed  Google Scholar 

  11. Chen J, Pande M, Huang YJ et al (2013) Cell cycle-related genes as modifiers of age of onset of colorectal cancer in Lynch syndrome: a large-scale study in non-Hispanic white patients. Carcinogenesis 34(2):299–306

    Article  PubMed Central  PubMed  Google Scholar 

  12. Felix R, Bodmer W, Fearnhead NS, van der Merwe L, Goldberg P, Ramesar RS (2006) GSTM1 and GSTT1 polymorphisms as modifiers of age at diagnosis of hereditary nonpolyposis colorectal cancer (HNPCC) in a homogeneous cohort of individuals carrying a single predisposing mutation. Mutat Res 602(1–2):175–181

    Article  CAS  PubMed  Google Scholar 

  13. Frazier ML, O’Donnell FT, Kong S et al (2001) Age-associated risk of cancer among individuals with N-acetyltransferase 2 (NAT2) mutations and mutations in DNA mismatch repair genes. Cancer Res 61(4):1269–1271

    CAS  PubMed  Google Scholar 

  14. Kong S, Amos CI, Luthra R, Lynch PM, Levin B, Frazier ML (2000) Effects of cyclin D1 polymorphism on age of onset of hereditary nonpolyposis colorectal cancer. Cancer Res 60(2):249–252

    CAS  PubMed  Google Scholar 

  15. Win AK, Hopper JL, Buchanan DD et al (2013) Are the common genetic variants known to be associated with colorectal cancer risk in the general population also associated with colorectal cancer risk for DNA mismatch repair gene mutation carriers? Eur J Cancer 49(7):1578–1587

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Gu Y, Parker A, Wilson TM, Bai H, Chang D-Y, Lu AL (2002) Human MutY homolog, a DNA glycosylase involved in base excision repair, physically and functionally interacts with mismatch repair proteins human MutS homolog 2/human MutS homolog 6. J Biol Chem 277(13):11135–11142

    Article  CAS  PubMed  Google Scholar 

  17. Giráldez M, Balaguer F, Caldés T et al (2009) Association of MUTYH and MSH6 germline mutations in colorectal cancer patients. Fam Cancer 8(4):525–531

    Article  PubMed  Google Scholar 

  18. Niessen R, Sijmons R, Ou J et al (2006) MUTYH and the mismatch repair system: partners in crime? Hum Genet 119(1):206–211

    Article  CAS  PubMed  Google Scholar 

  19. Steinke V, Rahner N, Morak M et al (2008) No association between MUTYH and MSH6 germline mutations in 64 HNPCC patients. Eur J Hum Genet 16(5):587–592

    Article  CAS  PubMed  Google Scholar 

  20. Stormorken A, Heintz K-M, Andresen PA, Hovig E, Møller P (2006) MUTYH mutations do not cause HNPCC or late onset familial colorectal cancer. Hered Cancer Clin Pract 4(2):90–93

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. van Puijenbroek M, Nielsen M, Reinards T et al (2007) The natural history of a combined defect in MSH6 and MUTYH in a HNPCC family. Fam Cancer 6(1):43–51

    Article  CAS  PubMed  Google Scholar 

  22. Ashton KA, Meldrum CJ, McPhillips ML, Kairupan CF, Scott RJ (2005) Frequency of the common MYH mutations (G382D and Y165C) in MMR mutation positive and negative HNPCC patients. Hered Cancer Clin Pract 3(2):65–70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Gorgens H, Kruger S, Kuhlisch E et al (2006) Microsatellite stable colorectal cancers in clinically suspected hereditary nonpolyposis colorectal cancer patients without vertical transmission of disease are unlikely to be caused by biallelic germline mutations in MYH. J Mol Diagn 8(2):178–182

    Article  PubMed Central  PubMed  Google Scholar 

  24. Newcomb PA, Baron J, Cotterchio M et al (2007) Colon Cancer Family Registry: an international resource for studies of the genetic epidemiology of colon cancer. Cancer Epidemiol Biomarkers Prev 16(11):2331–2343

    Article  PubMed  Google Scholar 

  25. Fritz A, Percy C, Jack A et al (eds) (2000) International classification of diseases for oncology (ICD-O), 3rd edn. World Health Organization, Geneva

    Google Scholar 

  26. Southey MC, Jenkins MA, Mead L et al (2005) Use of molecular tumor characteristics to prioritize mismatch repair gene testing in early-onset colorectal cancer. J Clin Oncol 23(27):6524–6532

    Article  CAS  PubMed  Google Scholar 

  27. Rumilla K, Schowalter KV, Lindor NM et al (2011) Frequency of deletions of EPCAM (TACSTD1) in MSH2-associated Lynch syndrome cases. J Mol Diagn 13(1):93–99

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Senter L, Clendenning M, Sotamaa K et al (2008) The clinical phenotype of lynch syndrome due to germ-line PMS2 mutations. Gastroenterology 135(2):419–428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Antoniou AC, Goldgar DE, Andrieu N et al (2005) A weighted cohort approach for analysing factors modifying disease risks in carriers of high-risk susceptibility genes. Genet Epidemiol 29(1):1–11

    Article  PubMed  Google Scholar 

  30. Jenkins MA, Baglietto L, Dowty JG et al (2006) Cancer risks for mismatch repair gene mutation carriers: a population-based early onset case-family study. Clin Gastroenterol Hepatol 4(4):489–498

    Article  CAS  PubMed  Google Scholar 

  31. Parkin DM, Whelan SL, Ferlay J, Teppo L, Thomas DB (eds) (2002) Cancer incidence in five continents, vol 8. International Agency for Research on Cancer, Lyon

    Google Scholar 

  32. Rogers WH (1993) Regression standard errors in clustered samples. Stata Tech Bull 3(13):19–23

    Google Scholar 

  33. Williams RL (2000) a note on robust variance estimation for cluster-correlated data. Biometrics 56(2):645–646

    Article  CAS  PubMed  Google Scholar 

  34. StataCorp (2013) Stata statistical software: release 13. StataCorp LP, College Station

    Google Scholar 

  35. Dowty JG, Win AK, Buchanan DD et al (2013) Cancer risks for MLH1 and MSH2 mutation carriers. Hum Mutat 34(3):490–497

    Article  CAS  PubMed  Google Scholar 

  36. Win AK, Buchanan DD, Rosty C et al (2015) Role of tumour molecular and pathology features to estimate colorectal cancer risk for first-degree relatives. Gut 64(1):101–110

    Article  PubMed  Google Scholar 

  37. Lubbe SJ, Di Bernardo MC, Chandler IP, Houlston RS (2009) Clinical implications of the colorectal cancer risk associated with MUTYH mutation. J Clin Oncol 27(24):3975–3980

    Article  CAS  PubMed  Google Scholar 

  38. Giráldez MD, Balaguer F, Bujanda L et al (2010) MSH6 and MUTYH deficiency is a frequent event in early-onset colorectal cancer. Clin Cancer Res 16(22):5402–5413

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank all study participants of the Colon Cancer Family Registry and staff for their contributions to this project.

Funding

This work was supported by Grant UM1 CA167551 from the National Cancer Institute, National Institutes of Health (NIH) and through cooperative agreements with members of the Colon Cancer Family Registry (CFR) and Principal Investigators. Collaborating centers include Australasian Colorectal Cancer Family Registry (U01/U24 CA097735), Mayo Clinic Cooperative Family Registry for Colon Cancer Studies (U01/U24 CA074800), Ontario Familial Colorectal Cancer Registry (U01/U24 CA074783), Seattle Colorectal Cancer Family Registry (U01/U24 CA074794), Stanford Consortium Colorectal Cancer Family Registry (U01/U24 CA074799), and University of Hawaii Colorectal Cancer Family Registry (U01/U24 CA074806). A.K.W. is an Australian National Health and Medical Research Council (NHMRC) Early Career Fellow. M.A.J. is an NHMRC Senior Research Fellow. J.L.H. is a NHMRC Senior Principal Research Fellow. D.D.B. is a University of Melbourne Research at Melbourne Accelerator Program (R@MAP) Senior Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aung Ko Win.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare with respect to this manuscript.

Additional information

Disclaimer: The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the CFRs, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government or the CFR.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Win, A.K., Reece, J.C., Buchanan, D.D. et al. Risk of colorectal cancer for people with a mutation in both a MUTYH and a DNA mismatch repair gene. Familial Cancer 14, 575–583 (2015). https://doi.org/10.1007/s10689-015-9824-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-015-9824-x

Keywords

Navigation