Skip to main content
Log in

Somatic mutations of the coding microsatellites within the beta-2-microglobulin gene in mismatch repair-deficient colorectal cancers and adenomas

  • Original Article
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

In colorectal cancers (CRCs) with tumour mismatch repair (MMR) deficiency, genes involved in the host immune response that contain microsatellites in their coding regions, including beta-2-microglobulin (B2M), can acquire mutations that may alter the immune response, tumour progression and prognosis. We screened the coding microsatellites within B2M for somatic mutations in MMR-deficient CRCs and adenomas to determine associations with tumour subtypes, clinicopathological features and survival. Incident MMR-deficient CRCs from Australasian Colorectal Cancer Family Registry (ACCFR) and the Melbourne Collaborative Cohort Study participants (n = 144) and 63 adenomas from 41 MMR gene mutation carriers from the ACCFR were screened for somatic mutations within five coding microsatellites of B2M. Hazard ratios (HR) and 95% confidence intervals (CI) for overall survival by B2M mutation status were estimated using Cox regression, adjusting for age at CRC diagnosis, sex, AJCC stage and grade. B2M mutations occurred in 30 (20.8%) of the 144 MMR-deficient CRCs (29% of the MLH1-methylated, 17% of the Lynch syndrome and 9% of the suspected Lynch CRCs). No B2M mutations were identified in the 63 adenomas tested. B2M mutations differed by site, stage, grade and lymphocytic infiltration although none reached statistical significance (p > 0.05). The HR for overall survival for B2M mutated CRC was 0.65 (95% CI 0.29–1.48) compared with B2M wild-type. We observed differences in B2M mutation status in MMR-deficient CRC by tumour subtypes, site, stage, grade, immune infiltrate and for overall survival that warrant further investigation in larger studies before B2M mutation status can be considered to have clinical utility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Haggar FA, Boushey RP (2009) Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg 22(4):191–197. doi:10.1055/s-0029-1242458

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ferlay J, Soerjomataram I, Dikshit R et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386. doi:10.1002/ijc.29210

    Article  CAS  PubMed  Google Scholar 

  3. Thibodeau SN, Bren G, Schaid D (1993) Microsatellite instability in cancer of the proximal colon. Science 260(5109):816–819

    Article  CAS  PubMed  Google Scholar 

  4. Guastadisegni C, Colafranceschi M, Ottini L, Dogliotti E (2010) Microsatellite instability as a marker of prognosis and response to therapy: a meta-analysis of colorectal cancer survival data. Eur J Cancer 46(15):2788–2798. doi:10.1016/j.ejca.2010.05.009

    Article  CAS  PubMed  Google Scholar 

  5. Ligtenberg MJ, Kuiper RP, Chan TL et al (2009) Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3′ exons of TACSTD1. Nat Genet 41(1):112–117. doi:10.1038/ng.283

    Article  CAS  PubMed  Google Scholar 

  6. Herman JG, Umar A, Polyak K et al (1998) Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci USA 95(12):6870–6875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Haraldsdottir S, Hampel H, Tomsic J et al (2014) Colon and endometrial cancers with mismatch repair deficiency can arise from somatic, rather than germline, mutations. Gastroenterology 147(6):1308-16 e1. doi:10.1053/j.gastro.2014.08.041

    Article  Google Scholar 

  8. Mensenkamp AR, Vogelaar IP, van Zelst-Stams WA et al (2014) Somatic mutations in MLH1 and MSH2 are a frequent cause of mismatch-repair deficiency in Lynch syndrome-like tumors. Gastroenterology 146(3):643-6 e8. doi:10.1053/j.gastro.2013.12.002

    Article  Google Scholar 

  9. Sourrouille I, Coulet F, Lefevre JH et al (2013) Somatic mosaicism and double somatic hits can lead to MSI colorectal tumors. Fam Cancer 12(1):27–33. doi:10.1007/s10689-012-9568-9

    Article  CAS  PubMed  Google Scholar 

  10. Buchanan DD, Rosty C, Clendenning M, Spurdle AB, Win AK (2014) Clinical problems of colorectal cancer and endometrial cancer cases with unknown cause of tumor mismatch repair deficiency (suspected Lynch syndrome). Appl Clin Genet 7:183–193. doi:10.2147/TACG.S48625

    PubMed  PubMed Central  Google Scholar 

  11. Hampel H, Frankel WL, Martin E et al (2008) Feasibility of screening for Lynch syndrome among patients with colorectal cancer. J Clin Oncol 26(35):5783–5788. doi:10.1200/JCO.2008.17.5950

    Article  PubMed  PubMed Central  Google Scholar 

  12. Boland CR, Goel A (2010) Microsatellite instability in colorectal cancer. Gastroenterology 138(6):2073-87 e3. doi:10.1053/j.gastro.2009.12.064

    Article  Google Scholar 

  13. Buchanan DD, Clendenning M, Rosty C et al (2017) Tumor testing to identify lynch syndrome in two Australian colorectal cancer cohorts. J Gastroenterol Hepatol 32(2):427–438. doi:10.1111/jgh.13468

    Article  CAS  PubMed  Google Scholar 

  14. Kloor M, von Knebel Doeberitz M (2016) The immune biology of microsatellite-unstable cancer. Trends Cancer 2(3):121–133. doi:10.1016/j.trecan.2016.02.004

    Article  PubMed  Google Scholar 

  15. Yamamoto H, Yamashita K, Perucho M (2001) Somatic mutation of the beta2-microglobulin gene associates with unfavorable prognosis in gastrointestinal cancer of the microsatellite mutator phenotype. Gastroenterology 120(6):1565–1567

    Article  CAS  PubMed  Google Scholar 

  16. Kloor M, Michel S, Buckowitz B et al (2007) Beta2-microglobulin mutations in microsatellite unstable colorectal tumors. Int J Cancer 121(2):454–458. doi:10.1002/ijc.22691

    Article  CAS  PubMed  Google Scholar 

  17. Tikidzhieva A, Benner A, Michel S et al (2012) Microsatellite instability and Beta2-Microglobulin mutations as prognostic markers in colon cancer: results of the FOGT-4 trial. Br J Cancer 106(6):1239–1245. doi:10.1038/bjc.2012.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bicknell DC, Kaklamanis L, Hampson R, Bodmer WF, Karran P (1996) Selection for beta 2-microglobulin mutation in mismatch repair-defective colorectal carcinomas. Curr Biol 6(12):1695–1697

    Article  CAS  PubMed  Google Scholar 

  19. Koelzer VH, Baker K, Kassahn D, Baumhoer D, Zlobec I (2012) Prognostic impact of beta-2-microglobulin expression in colorectal cancers stratified by mismatch repair status. J Clin Pathol 65(11):996–1002. doi:10.1136/jclinpath-2012-200742

    Article  PubMed  Google Scholar 

  20. Giles GG, English DR (2002) The Melbourne collaborative cohort study. IARC Sci Publ 156:69–70

    CAS  PubMed  Google Scholar 

  21. Newcomb PA, Baron J, Cotterchio M et al (2007) Colon Cancer Family Registry: an international resource for studies of the genetic epidemiology of colon cancer. Cancer Epidemiol Biomark Prev 16(11):2331–2343

    Article  Google Scholar 

  22. Cicek MS, Lindor NM, Gallinger S et al (2011) Quality assessment and correlation of microsatellite instability and immunohistochemical markers among population- and clinic-based colorectal tumors results from the Colon Cancer Family Registry. J Mol Diagn 13(3):271–281. doi:10.1016/j.jmoldx.2010.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Walsh MD, Buchanan DD, Pearson SA et al (2012) Immunohistochemical testing of conventional adenomas for loss of expression of mismatch repair proteins in Lynch syndrome mutation carriers: a case series from the Australasian site of the colon cancer family registry. Mod Pathol 25(5):722–730. doi:10.1038/modpathol.2011.209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rosty C, Young JP, Walsh MD et al (2013) Colorectal carcinomas with KRAS mutation are associated with distinctive morphological and molecular features. Mod Pathol 26(6):825–834. doi:10.1038/modpathol.2012.240

    Article  CAS  PubMed  Google Scholar 

  25. Korn EL, Graubard BI, Midthune D (1997) Time-to-event analysis of longitudinal follow-up of a survey: choice of the time-scale. Am J Epidemiol 145(1):72–80

    Article  CAS  PubMed  Google Scholar 

  26. Rozek LS, Schmit SL, Greenson JK et al. (2016) Tumor-infiltrating lymphocytes, Crohn’s-like lymphoid reaction, and survival from colorectal cancer. J Natl Cancer Inst. doi:10.1093/jnci/djw027

    PubMed  PubMed Central  Google Scholar 

  27. Linnebacher M, Gebert J, Rudy W et al (2001) Frameshift peptide-derived T-cell epitopes: a source of novel tumor-specific antigens. Int J Cancer 93(1):6–11

    Article  CAS  PubMed  Google Scholar 

  28. Saeterdal I, Bjorheim J, Lislerud K et al (2001) Frameshift-mutation-derived peptides as tumor-specific antigens in inherited and spontaneous colorectal cancer. Proc Natl Acad Sci USA 98(23):13255–13260. doi:10.1073/pnas.231326898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ripberger E, Linnebacher M, Schwitalle Y, Gebert J, von Knebel Doeberitz M (2003) Identification of an HLA-A0201-restricted CTL epitope generated by a tumor-specific frameshift mutation in a coding microsatellite of the OGT gene. J Clin Immunol 23(5):415–423

    Article  CAS  PubMed  Google Scholar 

  30. Schwitalle Y, Linnebacher M, Ripberger E, Gebert J, von Knebel Doeberitz M (2004) Immunogenic peptides generated by frameshift mutations in DNA mismatch repair-deficient cancer cells. Cancer Immun 4:14

    PubMed  Google Scholar 

  31. Schwitalle Y, Kloor M, Eiermann S et al (2008) Immune response against frameshift-induced neopeptides in HNPCC patients and healthy HNPCC mutation carriers. Gastroenterology 134(4):988–997. doi:10.1053/j.gastro.2008.01.015

    Article  CAS  PubMed  Google Scholar 

  32. von Knebel Doeberitz M, Kloor M (2013) Towards a vaccine to prevent cancer in Lynch syndrome patients. Fam Cancer 12(2):307–312. doi:10.1007/s10689-013-9662-7

    Article  Google Scholar 

  33. Le DT, Uram JN, Wang H et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372(26):2509–2520. doi:10.1056/NEJMoa1500596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xiao Y, Freeman GJ (2015) The microsatellite instable subset of colorectal cancer is a particularly good candidate for checkpoint blockade immunotherapy. Cancer Discov 5(1):16–18. doi:10.1158/2159-8290.CD-14-1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zaretsky JM, Garcia-Diaz A, Shin DS et al (2016) Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 375(9):819–829. doi:10.1056/NEJMoa1604958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Malesci A, Laghi L, Bianchi P et al (2007) Reduced likelihood of metastases in patients with microsatellite-unstable colorectal cancer. Clin Cancer Res 13(13):3831–3839. doi:10.1158/1078-0432.CCR-07-0366

    Article  CAS  PubMed  Google Scholar 

  37. Mlecnik B, Bindea G, Angell HK et al (2016) Integrative analyses of colorectal cancer show immunoscore is a stronger predictor of patient survival than microsatellite instability. Immunity 44(3):698–711. doi:10.1016/j.immuni.2016.02.025

    Article  CAS  PubMed  Google Scholar 

  38. Masugi Y, Nishihara R, Yang J et al (2016) Tumour CD274 (PD-L1) expression and T cells in colorectal cancer. Gut. doi:10.1136/gutjnl-2016-311421

    Google Scholar 

  39. Echterdiek F, Janikovits J, Staffa L et al (2016) Low density of FOXP3-positive T cells in normal colonic mucosa is related to the presence of beta2-microglobulin mutations in Lynch syndrome-associated colorectal cancer. Oncoimmunology 5(2):e1075692 doi:10.1080/2162402X.2015.1075692

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant UM1 CA167551 from the National Cancer Institute and through cooperative agreements with Australasian Colorectal Cancer Family Registry (U01 CA074778 and U01/U24 CA097735) and was conducted under Colon-CFR approval C-AU-1014-01. The Melbourne Collaborative Cohort Study for colorectal cancer was funded by NHMRC project Grant 509348 (PI-Dallas English) “Risk Factors for Molecular Subtypes of Colorectal Cancer”. Aung K. Win is an Australian National Health and Medical Council (NHMRC) Early Career Fellow. Melissa C. Southey is a NHMRC Senior Research Fellow. Mark A. Jenkins is a NHMRC Senior Research Fellow. John L. Hopper is a NHMRC Senior Principal Research Fellow and Distinguished Visiting Professor at Seoul National University, Korea. Christophe Rosty is the Jass Pathology Fellow. Daniel D. Buchanan is a University of Melbourne Research at Melbourne Accelerator Program (R@MAP) Senior Research Fellow and NHMRC R.D. Wright Career Development Fellow.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Daniel D. Buchanan.

Ethics declarations

Conflict of interest

The authors declare they hold no conflict of interest with respect to this work.

Disclaimer

The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centres in the Cancer Family Registries, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government or the Cancer Family Registry. Authors had full responsibility for the design of the study, the collection of the data, the analysis and interpretation of the data, the decision to submit the manuscript for publication, and the writing of the manuscript.

Additional information

Mark Clendenning and Alvin Huang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 28 KB)

Supplementary material 2 (DOCX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clendenning, M., Huang, A., Jayasekara, H. et al. Somatic mutations of the coding microsatellites within the beta-2-microglobulin gene in mismatch repair-deficient colorectal cancers and adenomas. Familial Cancer 17, 91–100 (2018). https://doi.org/10.1007/s10689-017-0013-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-017-0013-y

Keywords

Navigation