Skip to main content
Log in

Modeling the effect of imperfect staggering in product inflow using queuing theory: revisiting block stacking layout

  • Published:
Flexible Services and Manufacturing Journal Aims and scope Submit manuscript

Abstract

Conventional approaches to layout design of block stacked warehouses assume perfect staggering of product inflow leading to perfect sharing of space among products. Since such an assumption is seldom true, we argue that warehouses designed using the conventional approach may result in choking situations with large quantities of inventory waiting outside the storage areas. On the other hand, liberal space allocation such as in dedicated policy might lead to under-utilization of space. In this paper, we take a fresh look at the block stacked layout problem, modeling the effect of imperfectly staggered product arrivals using queuing theory. Analytical expressions are derived for arrival time and processing time coefficients of variation using warehouse parameters and design variables. Further, we develop a bi-objective optimization model to minimize both the space cost and waiting time. Our approach provides design options over a total space cost-waiting time trade-off frontier as opposed to singular design points given by conventional approaches. Computational experiments are conducted to derive further insights into the design of block stacked warehouses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ashayeri J, Gelders LF (1985) Warehouse design optimization. Eur J Oper Res 21(3):285–294

    Article  Google Scholar 

  • Bartholdi JJ, Hackman ST (2011) Warehouse & distribution science: release 0.92. The Supply Chain and Logistics Institute, School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta GA

    Google Scholar 

  • Bassan Y, Roll Y, Rosenblatt MJ (1980) Internal layout design of a warehouse. AIIE Transactions 12(4):317–322

    Article  Google Scholar 

  • Breuer L (2010) The G/G/s Queue. Wiley encyclopedia of operations research and management science. Wiley, New York

    Google Scholar 

  • Berry JR (1968) Elements of warehouse layout. Int J Prod Res 7(2):105–121

    Article  Google Scholar 

  • Das I, Dennis JE (1998) Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J Optim 8(3):631–657

    Article  MathSciNet  Google Scholar 

  • De Koster R, Le-Duc T, Roodbergen KJ (2007) Design and control of warehouse order picking: a literature review. Eur J Oper Res 182(2):481–501

    Article  Google Scholar 

  • Derhami S, Smith JS, Gue KR (2017) Optimising space utilisation in block stacking warehouses. Int J Prod Res 55(21):6436–6452

    Article  Google Scholar 

  • Derhami S, Smith JS, Gue KR (2019a) Space-efficient layouts for block stacking warehouses. IISE Trans 51:951–971

    Article  Google Scholar 

  • Derhami S, Smith JS, Gue KR (2019b) A simulation-based optimization approach to design optimal layouts for block stacking warehouses. Int J Prod Econ. https://doi.org/10.1016/j.ijpe.2019.107525

    Article  Google Scholar 

  • Goetschalckx M (2012) Storage systems and policies. In: Goetschalckx M (ed) Warehousing in the global supply chain. Springer, London, pp 31–51

    Chapter  Google Scholar 

  • Goetschalckx M, Ratldff HD (1991) Optimal lane depths for single and multiple products in block stacking storage systems. IIE Trans 23(3):245–258

    Article  Google Scholar 

  • Gray AE, Karmarkar US, Seidmann A (1992) Design and operation of an order-consolidation warehouse: models and application. Eur J Oper Res 58(1):14–36

    Article  Google Scholar 

  • Gu J, Goetschalckx M, McGinnis LF (2010) Research on warehouse design and performance evaluation: a comprehensive review. Eur J Oper Res 203(3):539–549

    Article  Google Scholar 

  • Hausman WH, Schwarz LB, Graves SC (1976) Optimal storage assignment in automatic warehousing systems. Manage Sci 22(6):629–638

    Article  Google Scholar 

  • Hopp WJ, Spearman ML (2011) Factory physics. Waveland Press, Long Grave

    Google Scholar 

  • Kim IY, De Weck OL (2006) Adaptive weighted sum method for multiobjective optimization: a new method for Pareto front generation. Struct Multidiscip Optim 31(2):105–116

    Article  MathSciNet  Google Scholar 

  • Kind DA (1975) Elements of space utilization. Transp Distrib Manag 15(2):29–34

    Google Scholar 

  • Kind DA (1965) Measuring warehouse space utilization. Transp Distrib Manag 5(7):23–33

    Google Scholar 

  • Kingman JFC (1961) The single server queue in heavy traffic. Math Proc Camb Philos Soc 57(04):902–904

    Article  MathSciNet  Google Scholar 

  • Koski J (1985) Defectiveness of weighting method in multicriterion optimization of structures. Commun Appl Numer Methods 1(6):333–337

    Article  Google Scholar 

  • Marsh WH (1979) Elements of block storage design. Int J Prod Res 17(4):377–394

    Article  Google Scholar 

  • Matson JO, Sonnentag JJ, White JA Imhoff RC (2014) An analysis of block stacking with lot splitting. In: IIE Annual Conference. Proceedings. Institute of Industrial and Systems Engineers (IISE), p. 497

  • Matson JO White JA (1981) Storage system optimization. No. PDRC-81–09.Georgia Inst of Tech Atlanta Production and Distribution Research Center

  • Mattson CA, Messac A (2003) Concept selection using s-Pareto frontiers. AIAA J 41(6):1190–1198

    Article  Google Scholar 

  • Medhi J (1991) Stochastic models in queueing theory. Academic Press, San Diego

    MATH  Google Scholar 

  • Rouwenhorst B, Reuter B, Stockrahm V, Van Houtum GJ, Mantel RJ, Zijm WHM (2000) Warehouse design and control: Framework and literature review. Eur J Oper Res 122(3):515–533

    Article  Google Scholar 

  • Stadler W (1979) A survey of multicriteria optimization or the vector maximum problem, part I: 1776–1960. J Optim Theory Appl 29(1):1–52

    Article  MathSciNet  Google Scholar 

  • White JA, Francis RL (1971) Normative models for some warehouse sizing problems. AIIE Trans 3(3):185–190

    Article  Google Scholar 

  • Yu Y, Koster R, Guo X (2015) Class-based storage with a finite number of items: using more classes is not always better. Prod Oper Manag 24(8):1235–1247

    Article  Google Scholar 

  • Zadeh L (1963) Optimality and non-scalar-valued performance criteria. IEEE Trans Autom Control 8(1):59–60

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Venkitasubramony.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkitasubramony, R., Adil, G.K. Modeling the effect of imperfect staggering in product inflow using queuing theory: revisiting block stacking layout. Flex Serv Manuf J 33, 689–716 (2021). https://doi.org/10.1007/s10696-020-09390-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10696-020-09390-8

Keywords

Navigation