Skip to main content
Log in

Modelling the mechanical structure of extreme shear ruptures with friction approaching zero generated in brittle materials

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Experiments on frictional stick-slip instability in brittle materials and natural observations show that friction falls towards zero in the head of shear ruptures propagating with extreme velocities (up to supershear levels). Although essential for understanding earthquakes, fracture mechanics and tribology the question of what physical processes determine how weakening occurs is still unclear. Here, using a mathematical model, we demonstrate that the extremely low friction can be caused by a fan-like fault structure formed on the basis of a tensile-cracking process observed in all extreme ruptures. The mathematical model visualises and describes the fan-structure as a mechanical system during rupture propagation. It explains some features observed in laboratory experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ben-David O, Rubinstein SM, Fineberg J (2010) Slip-stick and the evolution of frictional strength. Nature 463:76–79. doi:10.1038/nature08676

    Article  Google Scholar 

  • Bizzarri A (2009) Can flash heating of asperity contacts prevent melting? Geophys Res Lett 36(11):L11,304. doi:10.1029/2009GL037335

    Article  Google Scholar 

  • Bowden FP, Tabor D (2001) The friction and lubrication of solids. Oxford University Press, Oxford

    Google Scholar 

  • Di Toro G, Goldsby DL, Tullis TE (2004) Friction falls towards zero in quartz rock as slip velocity approaches seismic rates. Nature 427:436–439. doi:10.1038/nature02249

    Article  Google Scholar 

  • Ghaffari HO, Thompson BD, Young RP (2014) Complex networks and waveforms from acoustic emissions in laboratory earthquakes. Nonlinear Process Geophys 21:763–775. doi:10.5194/npg-21-763-2014

    Article  Google Scholar 

  • Griffith WA, Rosakis A, Pollard DD, Ko CW (2009) Dynamic rupture experiments elucidate tensile crack development during propagating earthquake ruptures. Geology 37(9):795–798. doi:10.1130/G30064A.1

    Article  Google Scholar 

  • Heaton TH (1990) Evidence for and implications of self-healing pulses of slip in earthquake rupture. Phys Earth Planet Inter 64(1):1–20. doi:10.1016/0031-9201(90)90002-F

    Article  Google Scholar 

  • Horii H, Nemat-Nasser S (1985) Compression-induced microcrack growth in brittle solids: axial splitting and shear failure. J Geophys Res 90(B4):3105–3125. doi:10.1029/JB090iB04p03105

    Article  Google Scholar 

  • King GCP, Sammis CG (1992) The mechanisms of finite brittle strain. Pure Appl Geophys 138(4):611–640. doi:10.1007/BF00876341

    Article  Google Scholar 

  • Lei X, Kusunose K, Rao MVMS, Nishizawa O, Satoh T (2000) Quasi-static fault growth and cracking in homogeneous brittle rock under triaxial compression using acoustic emission monitoring. J Geophys Res 105(B3):6127–6139. doi:10.1029/1999JB900385

    Article  Google Scholar 

  • Lu X, Lapusta N, Rosakis AJ (2007) Pulse-like and crack-like ruptures in experiments mimicking crustal earthquakes. Proc Natl Acad Sci USA 104(48):18,931–18,936. doi:10.1073/pnas.0704268104

    Article  Google Scholar 

  • Lykotrafitis G, Rosakis AJ, Ravichandran G (2006) Self-healing pulse-like shear ruptures in the laboratory. Science 313(5794):1765–1768. doi:10.1126/science.1128359

    Article  Google Scholar 

  • Magloughlin JF, Spray JG (1992) Frictional melting processes and products in geological materials: introduction and discussion. Tectonophysics 204(3–4):197–206. doi:10.1016/0040-1951(92)90307-R

    Article  Google Scholar 

  • Melosh HJ (1979) Acoustic fluidization: a new geologic process? J Geophys Res 84(B13):7513–7520. doi:10.1029/JB084iB13p07513

    Article  Google Scholar 

  • Ohnaka M, Shen L (1999) Scaling of the shear rupture process from nucleation to dynamic propagation: implications of geometric irregularity of the rupturing surfaces. J Geophys Res 104(B1):817–844. doi:10.1029/1998JB900007

  • Olsen KB, Madariaga R, Archuleta RJ (1997) Three-dimensional dynamic simulation of the 1992 Landers earthquake. Science 278(5339):834–838. doi:10.1126/science.278.5339.834

    Article  Google Scholar 

  • Ortlepp WD (1997) Rock fracture and rockbursts: an illustrative study, vol M9. Monograph series M9. South African Institute of Mining and Metallurgy, Johannesburg

    Google Scholar 

  • Peng S, Johnson AM (1972) Crack growth and faulting in cylindrical specimens of Chelmsford granite. Int J Rock Mech Min Sci Geomech Abstr 9(1):37–86. doi:10.1016/0148-9062(72)90050-2

    Article  Google Scholar 

  • Reches Z, Lockner DA (1994) Nucleation and growth of faults in brittle rocks. J Geophys Res 99(B9):18,159–18,173. doi:10.1029/94JB00115

    Article  Google Scholar 

  • Rice JR (2006) Heating and weakening of faults during earthquake slip. J Geophys Res 111(B5):B05,311. doi:10.1029/2005JB004006

    Article  Google Scholar 

  • Rosakis AJ, Samudrala O, Coker D (1999) Cracks faster than the shear wave speed. Science 284(5418):1337–1340. doi:10.1126/science.284.5418.1337

    Article  Google Scholar 

  • Rubinstein SM, Cohen G, Fineberg J (2004) Detachment fronts and the onset of dynamic friction. Nature 430:1005–1009. doi:10.1038/nature02830

    Article  Google Scholar 

  • Samudrala O, Huang Y, Rosakis AJ (2002) Subsonic and intersonic shear rupture of weak planes with a velocity weakening cohesive zone. J Geophys Res 107(B8):2170. doi:10.1029/2001JB000460

    Article  Google Scholar 

  • Scholz CH (2002) The mechanics of earthquakes and faulting. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Tarasov BG (2014) Hitherto unknown shear rupture mechanism as a source of instability in intact hard rocks at highly confined compression. Tectonophysics 621:69–84. doi:10.1016/j.tecto.2014.02.004

    Article  Google Scholar 

  • Tarasov BG (2016) Shear fractures of extreme dynamics. Rock Mech Rock Eng 49(10):3999–4021. doi:10.1007/s00603-016-1069-y

    Article  Google Scholar 

  • Tarasov BG (2017) Shear ruptures of extreme dynamics in laboratory and natural conditions. In: Wasseloo J (ed) Eighth international conference on deep and high stress mining (deep mining 2017), Keynote address, ISBN 978-0-9924810-6-3. Australian Centre for Geomechanics, Australia

  • Tarasov BG, Randolph MF (2016) Improved concept of lithospheric strength and earthquake activity at shallow depths based upon the fan-head dynamic shear rupture mechanism. Tectonophysics 667:124–143. doi:10.1016/j.tecto.2015.11.016

  • Wen YY, Ma KF, Song TRA, Mooney WD (2009) Validation of the rupture properties of the 2001 Kunlun, China (Ms = 8.1), earthquake from seismological and geological observations. Geophys J Int 177(2):555–570. doi:10.1111/j.1365-246X.2008.04063.x

    Article  Google Scholar 

  • Xia K, Rosakis AJ, Kanamori H (2004) Laboratory earthquakes: the sub-Rayleigh-to-supershear rupture transition. Science 303(5665):1859–1861. doi:10.1126/science.1094022

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support provided by the Centre for Offshore Foundation Systems (COFS) at the University of Western Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris G. Tarasov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 4265 KB)

Supplementary material 2 (avi 5554 KB)

Supplementary material 3 (avi 2459 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasov, B.G., Guzev, M.A., Sadovskii, V.M. et al. Modelling the mechanical structure of extreme shear ruptures with friction approaching zero generated in brittle materials. Int J Fract 207, 87–97 (2017). https://doi.org/10.1007/s10704-017-0223-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-017-0223-1

Keywords

Mathematics Subject Classification

Navigation