Skip to main content

Advertisement

Log in

Measurement and modeling of nitrous and nitric oxide emissions from a tea field in subtropical central China

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Tea fields represent an important source of nitrous oxide (N2O) and nitric oxide (NO) emissions due to high nitrogen (N) fertilizer applications and very low soil pH. To investigate the temporal characteristics of N2O and NO emissions, daily emissions were measured over 2½ years period using static closed-chamber/gas chromatograph and chemiluminescent measurement system in a tea field of subtropical central China. Our results revealed that N2O and NO fluxes showed similar temporal trends, which were generally driven by temporal variations in soil temperature and soil moisture content and were also affected by fertilization events. The measured average annual N2O and NO emissions were 10.9 and 3.3 kg N ha−1 year−1, respectively, highlighting the high N2O and NO emissions from tea fields. To improve our understanding of N-cycling processes in tea ecosystems, we developed a new nitrogenous gas emission module for the water and nitrogen management model (WNMM, V2) that simulated daily N2O and NO fluxes, in which the NO was simulated as being emitted from both nitrification and nitrite chemical decomposition. The results demonstrated that the WNMM captured the general temporal dynamics of N2O (NSE = 0.40; R2 = 0.52, RMSE = 0.03 kg N ha−1 day−1, P < 0.001) and NO (NSE = 0.41; R2 = 0.44, RMSE = 0.01 kg N ha−1 day−1, P < 0.001) emissions. According to the simulation, denitrification was identified as the dominant process contributing 76.5% of the total N2O emissions, while nitrification and nitrite chemical decomposition accounted for 52.3 and 47.7% of the total NO emissions, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akiyama H, Yan X, Yagi K (2006) Estimations of emission factors for fertilizer-induced direct N2O emissions from agricultural soils in Japan: summary of available data. Soil Sci Plant Nutr 52:774–787

    Article  CAS  Google Scholar 

  • Aranibar JN, Otter L, Macko SA, Feral CJW, Epstein HE, Dowty PR, Eckardt F, Shugart HH, Swap RJ (2004) Nitrogen cycling in the soil–plant system along a precipitation gradient in the Kalahari sands. Glob Change Biol 10:359–373

    Article  Google Scholar 

  • Bell MJ, Jones E, Smith J, Smith P, Yeluripati J, Augustin J, Juszczak R, Olejnik J, Sommer M (2012) Simulation of soil nitrogen, nitrous oxide emissions and mitigation scenarios at 3 European cropland sites using the ECOSSE model. Nutr Cycl Agroecosyst 92:161–181

    Article  CAS  Google Scholar 

  • Bouwman AF, Stehfest E, Vankessel C (2010) Nitrous oxide emissions from the nitrogen cycle in arable agriculture: estimation and mitigation. In: Smith K (ed) Nitrous oxide and climate change. Earthscan, London, pp 1–240

    Google Scholar 

  • Bremner JM (1997) Sources of nitrous oxide in soils. Nutr Cycl Agroecosyst 49:7–16

    Article  CAS  Google Scholar 

  • Butterbach-Bahl K, Stange F, Papen H, Li C (2001) Regional inventory of nitric oxide and nitrous oxide emissions for forest soils of southeast Germany using the biogeochemical model PnET-N-DNDC. J Geophys Res Atmos 106:34155–34166

    Article  CAS  Google Scholar 

  • Butterbach-Bahl K, Kahl M, Mykhayliv L, Werner C, Kiese R, Li C (2009) A European-wide inventory of soil NO emissions using the biogeochemical models DNDC/Forest-DNDC. Atmos Environ 43:1392–1402

    Article  CAS  Google Scholar 

  • Cai Z, Sawamoto T, Li C, Kang G, Boonjawat J, Mosier A, Wassmann R, Tsuruta H (2003) Field validation of the DNDC model for greenhouse gas emissions in East Asian cropping systems. Glob Biogeochem Cycles 17:1107. doi:10.1029/2003GB002046

    Article  Google Scholar 

  • Chatskikh D, Olesen JE, Berntsen J, Regina K, Yamulki S (2005) Simulation of effects of soils, climate and management on N2O emission from grasslands. Biogeochemistry 76:395–419

    Article  CAS  Google Scholar 

  • Chen D, Li Y, Grace P, Mosier AR (2008) N2O emissions from agricultural lands: a synthesis of simulation approaches. Plant Soil 309:169–189

    Article  CAS  Google Scholar 

  • Chen QL, Zhan YQ, Wu HS, Wang RZ, Wan L (2012) Nitrogen leaching in various soil–crop systems. In: Proceedings of the 12th Congress of Soil Science Society of China. Future Soil Science III, Jiangsu Science and Technology Press, Nanjing, China, p 1265 (in Chinese)

  • Conrad WJ (1990) Flux of NO x between soil and atmosphere: importance and soil microbial metabolism. In: Sorenson J, Revebech NP (eds) Denitrification in soil and sediment, vol 56. Plenum Press, New York, pp 105–128

    Chapter  Google Scholar 

  • Cui M, Caldwell MM (1997) A large ephemeral release of nitrogen upon wetting of dry soil and corresponding root response in the field. Plant Soil 191:291–299

    Article  CAS  Google Scholar 

  • Davidson EA (1992) Sources of nitric oxide and nitrous oxide following wetting of dry soil. Soil Sci Soc Am J 56:95–102

    Article  CAS  Google Scholar 

  • Davidson EA (2009) The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat Geosci 2:659–662

    Article  CAS  Google Scholar 

  • Davidson EA, Stark JM, Firestone MK (1990) Microbial production and consumption of nitrate in an annual grassland. Ecology 71:1968–1975

    Article  Google Scholar 

  • Davidson EA, Keller M, Erickson HE, Verchot LV, Veldkamp E (2000) Testing a conceptual model of soil emissions of nitrous and nitric oxides. Bioscience 50:51–60

    Google Scholar 

  • Eickenscheidt N, Brumme R (2012) NO x and N2O fluxes in a nitrogen-enriched European spruce forest soil under experimental long-term reduction of nitrogen depositions. Atmos Environ 60:51–58

    Article  CAS  Google Scholar 

  • Engel T, Priesack E (1993) Expert-N—a building block system of nitrogen models as resource for advice, research, water management and policy. In: Eijsackers H, Hamers T (eds) Integrated soil and sediment research: a basic for proper protection. Kluwer, Dordrecht, pp 503–507

    Chapter  Google Scholar 

  • Fang S, Yujing M (2009) NO x fluxes from several typical agricultural fields during summer-autumn in the Yangtze Delta, China. Atmos Environ 43:2665–2671

    Article  CAS  Google Scholar 

  • Firestone MK, Davidson EA (1989) Microbiological basis of NO and N2O production in soil. In: Andreae MO, Schimel DS (eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere. Wiley, Hoboken, pp 7–21

    Google Scholar 

  • Franz XM, Wen XY (2005) Biogenic emissions of nitric oxide and nitrous oxide from arid and semi-arid land. In: D’Odorico P, Porporato A (eds) Dryland ecohydrology. Springer, Dordrecht, pp 233–255

    Google Scholar 

  • Fu XQ, Li Y, Su WJ, Shen JL, Xiao RL, Tong CL, Wu J (2012) Annual dynamics of N2O emissions from a tea field in southern subtropical China. Plant Soil Environ 58:373–378

    Article  CAS  Google Scholar 

  • Fukumoto Y (2012) Nitration promotion process for reducing nitrogen losses by N2O/NO emissions in the composting of livestock manure. In: Hernandez-Soriano MC (ed) Soil health and land use management. Intech, Maastricht, pp 155–174

    Google Scholar 

  • Gabrielle B (2006) Sensitivity and uncertainty analysis of a static denitrification model. In: Wallach D, Makowski D, Jones JW (eds) Working with dynamic crop models: evaluating, analyzing, parameterizing and using them. Elsevier, Amsterdam, pp 359–366

    Google Scholar 

  • Goodroad LL, Keeney DR (1984) Nitrous oxide production in aerobic soils under varying pH, temperature and water content. Soil Biol Biochem 16:39–43

    Article  CAS  Google Scholar 

  • Grant RF (2001) A review of the Canadian ecosystem model ecosys. In: Shaffer M (ed) Modeling carbon and nitrogen dynamics for soil management. CRC Press, Boca Raton, pp 175–264

    Google Scholar 

  • Groffman PM, Brumme R, Butterbach-Bahl K, Dobbie KE, Mosier AR, Ojima D, Papen H, Parton WJ, Smith KA, Wagner-Riddle C (2000) Evaluating annual nitrous oxide fluxes at the ecosystem scale. Glob Biogeochem Cycles 14:1061–1070

    Article  CAS  Google Scholar 

  • Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KWT, Vitousek PM, Zhang FS (2010) Significant acidification in major Chinese croplands. Science 327:1008–1010

    Article  CAS  PubMed  Google Scholar 

  • Han W, Kemmitt SJ, Brookes PC (2007) Soil microbial biomass and activity in Chinese tea gardens of varying stand age and productivity. Soil Biol Biochem 39:1468–1478

    Article  CAS  Google Scholar 

  • He JZ, Shen JP, Zhang LM, Zhu YG, Zheng YM, Xu MG, Di H (2007) Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol 9:2364–2374

    Article  CAS  PubMed  Google Scholar 

  • Henault C, Bizouard F, Laville P, Gabrielle B, Nicoullaud B, Germon JC, Cellier P (2005) Predicting in situ soil N2O emission using NOE algorithm and soil database. Glob Change Biol 11:115–127

    Article  Google Scholar 

  • Hirono Y, Nonaka K (2012) Nitrous oxide emissions from green tea fields in Japan: contribution of emissions from soil between rows and soil under the canopy of tea plants. Soil Sci Plant Nutr 58:384–3922

    Article  CAS  Google Scholar 

  • Hou AX, Tsuruta H (2003) Nitrous oxide and nitric oxide fluxes from an upland field in Japan: effect of urea type, placement, and crop residues. Nutr Cycl Agroecosyst 65:191–200

    Article  CAS  Google Scholar 

  • Huang Y, Li Y, Yao H (2014) Nitrate enhances N2O emission more than ammonium in a highly acidic soil. J Soils Sediments 14:146–154

    Article  CAS  Google Scholar 

  • Hutchinson GL, Vigil MF, Doran JW, Kessavalou A (1997) Coarse-scale-atmosphere NO x exchange modeling: status and limitations. Nutr Cycl Agroecosyst 48:25–35

    Article  CAS  Google Scholar 

  • Intergovernmental Panel of Climate Change (2013) Climate Change 2013: the physical science basis: contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York

    Google Scholar 

  • Johnsson H, Bergstrom L, Jansson P, Paustian K (1987) Simulated nitrogen dynamics and losses in a layered agricultural soil. Agric Ecosyst Environ 18:333–356

    Article  Google Scholar 

  • Kesik M, Ambus P, Baritz R, Brüggemann N, Butterbach-Bahl K, Damm M, Duyzer J, Horváth L, Kiese R, Kitzler B, Leip A, Li C, Pihlatie M, Pilegaard K, Seufert S, Simpson D, Skiba U, Smiatek G, Vesala T, Zechmeister-Boltenstern S (2005) Inventories of N2O and NO emissions from European forest soils. Biogeosciences 2:353–375

    Article  CAS  Google Scholar 

  • Laville P, Hénault C, Gabrielle B, Serça D (2005) Measurement and modeling of NO fluxes on maize and wheat crops during their growing seasons: effect of crop management. Nutr Cycl Agroecosyst 72:159–171

    Article  Google Scholar 

  • Laville P, Lehuger S, Loubet B, Chaumartin F, Cellier P (2011) Effect of management, climate and soil conditions on N2O and NO emissions from an arable crop rotation using high temporal resolution measurements. Agric For Meteorol 151:228–240

    Article  Google Scholar 

  • Li CS (2000) Modeling trace gas emissions from agricultural ecosystems. Nutr Cycl Agroecosyst 58:257–276

    Article  Google Scholar 

  • Li D, Wang X (2007) Nitric oxide emission from a typical vegetable field in the Pearl River Delta, China. Atmos Environ 41:9498–9505

    Article  CAS  Google Scholar 

  • Li C, Aber J, Stange F, Butterbach-Bahl K, Papen H (2000) A process-oriented model of N2O and NO emissions from forest soils. J Geophys Res 105:4369–4384

    Article  CAS  Google Scholar 

  • Li Y, Chen D, Zhang Y, Edis R, Ding H (2005) Comparison of three modeling approaches for simulating denitrification and nitrous oxide emissions from loam-textured arable soils. Glob Biogeochem Cycles. doi:10.1029/2004GB002392

    Google Scholar 

  • Li Y, White R, Chen D, Zhang J, Li B, Zhang Y, Huang Y, Edis R (2007) A spatially referenced water and nitrogen management model (WNMM) for (irrigated) intensive cropping systems in the North China Plain. Ecol Modell 203:395–423

    Article  Google Scholar 

  • Li Y, Fu X, Liu X, Shen J, Luo Q, Xiao R, Li Y, Tong C, Wu J (2013) Spatial variability and distribution of N2O emissions from a tea field during the dry season in subtropical central China. Geoderma 193–194:1–12

    Article  Google Scholar 

  • Lin Y, Han W (2009) N2O emissions from different soils. Chin J Tea Sci 29:456–464

    CAS  Google Scholar 

  • Linn DM, Doran JW (1984) Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci Soc Am J 48:1667–1672

    Google Scholar 

  • Liu S, Reiners WA, Keller M, Schimel DS (2000) Simulation of nitrous oxide and nitric oxide emissions from tropical primary forests in the Costa Rican Atlantic Zone. Environ Model Softw 15:727–743

    Article  Google Scholar 

  • Liu C, Zheng X, Zhou Z, Han S, Wang Y, Wang K, Liang W, Li M, Chen D, Yang Z (2010) Nitrous oxide and nitric oxide emissions from an irrigated cotton field in Northern China. Plant Soil 332:123–134

    Article  CAS  Google Scholar 

  • Monteny G, Bannink A, Chadwick D (2006) Greenhouse gas abatement strategies for animal husbandry. Agric Ecosyst Environ 112:163–170

    Article  CAS  Google Scholar 

  • NBSC (2014) China Statistical Yearbook, annual publication, National Bureau of Statistics of China, Beijing. http://www.stats.gov.cn/tjsj/ndsj/2014/indexeh.htm. Last access 1 Oct 2014

  • Norman J, Jansson P, Farahbakhshazad N, Butterbach-Bahl K, Li C, Klemedtsson L (2008) Simulation of NO and N2O emissions from a spruce forest during a freeze/thaw event using an N-flux submodel from the PnET-N-DNDC model integrated to Coupmodel. Ecol Modell 216:18–30

    Article  CAS  Google Scholar 

  • Pang XB, Mu YJ, Lee XQ, Fang SX, Yuan J, Huang DK (2009) Nitric oxides and nitrous oxide from typical vegetables cropland in China: effect of cannoy, soil properties and field management. Atmos Environ 43:2571–2578

    Article  CAS  Google Scholar 

  • Parton WJ, Holland EA, Del Grosso SJ, Hartman MD, Martin RE, Mosier AR, Ojima DS, Schimel DS (2001) Generalized model for NO x and N2O emissions from soil. J Geophys Res Atmos 106:17403–17419

    Article  CAS  Google Scholar 

  • Pilegaard K (2013) Processes regulating nitric oxide emissions from soils. Philos Trans R Soc B. doi:10.1098/rstb.2013.126

    Google Scholar 

  • Potter CS, Matson PA, Vitousek PM, Davidson EA (1996) Process modeling of controls on nitrogen trace gas emissions from soils worldwide. J Geophys Res Atmos 101:1361–1377

    Article  CAS  Google Scholar 

  • Prisley SP, Mortimer MJ (2004) A synthesis of literature on valuation of models for policy applications, with implications or forest carbon accounting. For Ecol Manag 98:89–103

    Article  Google Scholar 

  • Remde A, Conrad R (1991) Role of nitrification and denitrification for NO metabolism in soil. Biogeochemistry 12:189–205

    Article  CAS  Google Scholar 

  • Riley WJ, Matson PA (2000) Nloss: a mechanistic model of denitrified N2O and N2 evolution from soil. Soil Sci 165:237–249

    Article  CAS  Google Scholar 

  • Rolland MN, Gabrielle B, Laville P, Serça D, Cortinovis J, Larmanou E, Lehuger S, Cellier P (2008) Modeling of nitric oxide emissions from temperate agricultural soils. Nutr Cycl Agroecosyst 80:75–93

    Article  CAS  Google Scholar 

  • Shen JL, Li Y, Liu XL, Luo XS, Zhang YZ, Wu J (2013) Atmospheric dry and wet nitrogen deposition on three contrasting land use types of agricultural catchment in subtropical central China. Atmos Environ 67:415–424

    Article  CAS  Google Scholar 

  • Skiba U, Fowler D, Smith KA (1997) Nitric oxide emissions from agricultural soils in temperate and tropical climate: sources, controls and mitigation options. Nutr Cycl Agroecosyst 48:139–153

    Article  CAS  Google Scholar 

  • Tokuda S, Hayatsu M (2000) Nitrous oxide production from strongly acid tea field soil. Soil Sci Plant Nutr 46:835–844

    Article  CAS  Google Scholar 

  • Trebs I (2001) Primäregenwäder and brandgerodete Gebiete in Brasilien, Untersuchungen zur Freisetzung und Aufnahme von Stickstoffmonoxid (NO) an Bodenproben im Labormaßsstab, Hochschule für Technik, Wirtschaft und Kultur, Leipzig, Germany, p 58

  • Venterea RT, Rolston DE (2000) Mechanisms and kinetics of nitric and nitrous oxide production during nitrification in agricultural soil. Glob Change Biol 6:303–316

    Article  Google Scholar 

  • Wang JY, Cardenas LM, Misselbrook TH, Cuttle S, Thorman RE, Li CS (2012) Modelling nitrous oxide emissions from grassland systems. Environ Pollut 162:223–233

    Article  CAS  PubMed  Google Scholar 

  • Williams EJ, Guenther A, Fehsenfeldi FC (1992) An inventory of nitric oxide emissions from soils in the United States. J Geophys Res 97:1033–1042

    Google Scholar 

  • Wu X, Ru GM (1986) Uptake and utilizing nitrogen fertilizer by tea plant. J Tea Sci 6:15–24 (in Chinese)

    Google Scholar 

  • Wu X, Zhang A (2014) Comparison of three models for simulating N2O emissions from paddy fields under water-saving irrigation. Atmos Environ 98:500–509

    Article  CAS  Google Scholar 

  • Yan X, Ohara T, Akimoto H (2005) Statistical modeling of global soil NO x emissions. Glob Biogeochem Cycles 19:1–16

    Article  CAS  Google Scholar 

  • Yao Z, Wei Y, Liu C, Zheng X, Xie B (2015) Organically fertilized tea plantation simulates N2O emissions and lowers NO fluxes in subtropical China. Biogeosciences 12:5915–5928

    Article  Google Scholar 

  • Yienger JJ, Levy H (1995) Empirical model of global soil-biogenic NO x emissions. J Geophys Res 11:447–464

    Google Scholar 

  • Zhang Y, Liu J, Mu Y, Pei S, Lun X, Chai F (2011) Emissions of nitrous oxide, nitrogen oxides and ammonia from a maize field in the North China Plain. Atmos Environ 45:2956–2961

    Article  CAS  Google Scholar 

  • Zheng X, Mei B, Wang Y, Xie B, Wang Y, Dong H, Xu H, Chen G, Cai Z, Yue J, Gu J, Su F, Zou J, Zhu J (2008) Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 311:211–234

    Article  CAS  Google Scholar 

  • Zhu T, Zhang J, Meng T, Zhang Y, Yang J, Müller C, Cai Z (2014) Tea plantation destroys soil retention of NO3 and increases N2O emissions in subtropical China. Soil Biol Biochem 73:106–114

    Article  CAS  Google Scholar 

  • Zou J, Huang Y, Lu Y, Zheng X, Wang Y (2005) Direct emission factor for N2O from rice–winter wheat rotation systems in southeast China. Atmos Environ 39:4755–4765

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (41671243) and the National Basic Research Program of China (2012CB417105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Li, Y., Wang, C. et al. Measurement and modeling of nitrous and nitric oxide emissions from a tea field in subtropical central China. Nutr Cycl Agroecosyst 107, 157–173 (2017). https://doi.org/10.1007/s10705-017-9826-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-017-9826-1

Keywords

Navigation