Skip to main content

Advertisement

Log in

Internal Variability Versus Anthropogenic Forcing on Sea Level and Its Components

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

In this paper we review and update detection and attribution studies in sea level and its major contributors during the past decades. Tide gauge records reveal that the observed twentieth-century global and regional sea level rise is out of the bounds of its natural variability, evidencing thus a human fingerprint in the reported trends. The signal varies regionally, and it partly depends on the magnitude of the background variability. The human fingerprint is also manifested in the contributors of sea level for which observations are available, namely ocean thermal expansion and glaciers’ mass loss, which dominated the global sea level rise over the twentieth century. Attribution studies provide evidence that the trends in both components are clearly dominated by anthropogenic forcing over the second half of the twentieth century. In the earlier decades, there is a lack of observations hampering an improved attribution of causes to the observed sea level rise. At certain locations along the coast, the human influence is exacerbated by local coastal activities that induce land subsidence and increase the risk of sea level-related hazards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abidin HZ, Djaja R, Darmawan D, Hadi S, Akbar A, Rajiyowiryono H, Sudibyo Y, Meilano I, Kasuma MA, Kahar J, Subarya C (2001) Land subsidence of Jakarta (Indonesia) and its geodetic monitoring. Nat Hazards 23:365–387

    Article  Google Scholar 

  • Abidin HZ, Andreas H, Gumilar I, Wibowo IRR (2015). On correlation between urban development, land subsidence and flooding phenomena in Jakarta. In: Proceedings of IAHS, 370, 15–20, 2015 proc-iahs.net/370/15/2015/. doi:10.5194/piahs-370-15-2015

  • Agnew DC (1992) The time-domain behaviour of power-law noises. Geophys Res Lett 19(4):333–336

    Article  Google Scholar 

  • Allen MR, Tett SFB (1999) Checking for model consistency in optimal fingerprinting. Clim Dyn 15:419–434

    Article  Google Scholar 

  • Barbosa SM, Silva ME, Fernandes MJ (2008) Time series analysis of sea-level records: characterising long-term variability. In: Donner RV, Barbosa SM (eds) Nonlinear time series analysis in the geosciences. Springer, New York, pp 157–173

    Chapter  Google Scholar 

  • Barnett TP, Pierce DW, Schnur R (2001) Detection of anthropogenic climate change in the world’s oceans. Science 292:270

    Article  Google Scholar 

  • Barnett TP, Pierce DW, AchutaRao KM, Gleckler PJ, Santer BD, Gregory JM, Washington WM (2005) Penetration of human induced warming into the world’s oceans. Science 309:284–287

    Article  Google Scholar 

  • Becker M, Karpytchev M, Lennartz-Sassinek S (2014) Long-term sea level trends: natural or anthropogenic? Geophys Res Lett 41:5571–5580. doi:10.1002/2014GL061027

    Article  Google Scholar 

  • Bilbao RAF, Gregory JM, Bouttes N (2015) Analysis of the regional pattern of sea level change due to ocean dynamics and density change for 1993–2099 in observations and CMIP5 AOGCMs. Clim Dyn. doi:10.1007/s00382-015-2499-z

    Google Scholar 

  • Bindoff NL, Willebrand J, Artale V, Cazenave A, Gregory J et al (2007) Observations: oceanic climate change and sea level. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis, contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 385–432

    Google Scholar 

  • Bindoff NL et al (2013) Detection and attribution of climate change: from global to regional. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Bordbar MH, Martin T, Latif M, Park W (2015) Effects of long-term variability on projections of twenty-first century dynamic sea level. Nat Clim Change 5:343–347. doi:10.1038/nclimate2569

    Article  Google Scholar 

  • Bos MS, Williams SDP, Araujo IB, Bastos L (2014) The effect of temporal correlated noise on the sea level rate and acceleration uncertainty. Geophys J Int 196:1423–1430

    Article  Google Scholar 

  • Bouttes N, Gregory JM (2014) Attribution of the spatial pattern of CO2-forced sea level change to ocean surface flux changes. Environ Res Lett 9:034004. doi:10.1088/1748-9326/9/3/034004

    Article  Google Scholar 

  • Bouttes N, Gregory JM, Kuhlbrod T, Smith RS (2014) The drivers of projected North Atlantic sea level change. Clim Dyn 43:1531–1544. doi:10.1007/s00382-013-1973-8

    Article  Google Scholar 

  • Burke EE, Roe GH (2014) The absence of memory in the climatic forcing of glaciers. Clim Dyn 42:1335–1346

    Article  Google Scholar 

  • Calafat FM, Chambers DP (2013) Quantifying recent acceleration in sea level unrelated to internal climate variability. Geophys Res Lett 40:3661–3666. doi:10.1002/grl.50731

    Article  Google Scholar 

  • Carton JA, Giese BS, Grodsky SA (2005) Sea level rise and the warming of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis. J Geophys Res Oceans 110(C9). doi:10.1029/2004JC002817

  • Chao BF, Wu YH, Li YS (2008) Impact of artificial reservoir water impoundment on global sea level. Science 320:212–214

    Article  Google Scholar 

  • Church JA, White NJ (2011) Sea-level rise from the late 19th to the early 21st century. Surv Geophys 32:585–602

    Article  Google Scholar 

  • Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne AJ, PfefferWT, Stammer D, Unnikrishnan AS (2013) Sea level change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM(eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Cogley JG (2009) Geodetic and direct mass-balance measurements: comparison and joint analysis. Ann Glaciol 50:96–100

    Article  Google Scholar 

  • Dangendorf S, Rybski D, Mudersbach C, Müller A, Kaufmann E, Zorita E, Jensen J (2014a) Evidence for long-term memory in sea level. Geophys Res Lett 41:5530–5537. doi:10.1002/2014GL060538

    Article  Google Scholar 

  • Dangendorf S, Calafat FM, Arns A, Wahl T, Haigh ID, Jensen J (2014b) Mean sea level variability in the North Sea: processes and implications. J. Geophys Res Oceans 119:6820–6841. doi:10.1002/2014JC009901

    Article  Google Scholar 

  • Dangendorf S, Marcos M, Muller A, Zorita E, Riva R, Berk K, Jensen J (2015) Detecting anthropogenic footprints in sea level rise. Nat Commun. doi:10.1038/ncomms8849

    Google Scholar 

  • Douglas BC (2005) Gulf of Mexico and Atlantic coast sea level change. In: Sturges W, Lugo-Fernández A (eds) Circulation in the Gulf of Mexico: observations and models. Geophysical monograph series, vol 161. American Geophysical Union, Washington, DC, pp 111–121

    Chapter  Google Scholar 

  • England MH, McGregor S, Spence P, Meehl GA, Timmermann A, Cai W, Gupta AS, McPhaden MJ, Purich A, Santoso A (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change 4(3):222–227. doi:10.1038/nclimate2106

    Article  Google Scholar 

  • Fenoglio-Marc L, Groten E, Dietz C (2004) Vertical land motion in the Mediterranean Sea from altimetry and tide gauge stations. Mar Geodesy 27(3–4):683–701

    Article  Google Scholar 

  • Fenoglio-Marc L, Braitenberg C, Tunini L (2011) Sea level variability and trends in the Adriatic Sea in 1993–2008 from tide gauges and satellite altimetry. Phys Chem Earth. doi:10.1016/j.pce.2011.05.014

    Google Scholar 

  • Fenoglio-Marc L, Schöne T, Illigner J, Becker M, Manurung P, Khafid (2012) Sea level change and vertical motion from satellite altimetry, tide gauges and GPS in the Indonesian Region. Mar Geodesy 35(sup1):137–150. doi:10.1080/01490419.2012.718682

    Article  Google Scholar 

  • Frankcombe LM, McGregor S, England MH (2014) Robustness of the modes of Indo-Pacific sea level variability. Clim Dyn. doi:10.1007/s00382-014-2377-0

    Google Scholar 

  • Gardner AS, Moholdt G, Cogley JG, Wouters B, Arendt AA, Wahr J, Berthier E, Hock R, Pfeffer WT, Kaser G, Ligtenberg SRM, Bolch T, Sharp MJ, Hagen JO, van den Broeke MR, Paul F (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340:852–857

    Article  Google Scholar 

  • Gehrels WR, Woodworth PL (2013) When did modern rates of sea-level rise start? Global Planet Change 100:263–277

    Article  Google Scholar 

  • Gleckler PJ, Santer BD, Domingues CM, Pierce DW, Barnett TP, Church JA, Taylor KE, AchutaRao KM, Boyer TP, Caldwell PM (2012) Human-induced global ocean warming on multidecadal timescales. Nat Clim Change 2:524–529

    Google Scholar 

  • Hamlington BD, Strassburg MW, Leben RR, Han W, Nerem RS, Kim K-Y (2014) Uncovering an anthropogenic sea-level rise signal in the Pacific Ocean. Nat Clim Change 4(9):782–785. doi:10.1038/nclimate2307

    Article  Google Scholar 

  • Han W et al (2013) Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Clim Dyn. doi:10.1007/s00382-013-1951-1

    Google Scholar 

  • Hay CC, Morrow E, Kopp RE, Mitrovica JX (2015) Probabilistic reanalysis of twentieth-century sea-level rise. Nature 517:481–484

    Article  Google Scholar 

  • Hegerl GC et al (2010) Good practice guidance paper on detection and attribution related to anthropogenic climate change. In: Stocker TF et al (ed) Meeting report of the intergovernmental panel on climate change expert meeting on detection and attribution of anthropogenic climate change. IPCC working group I technical support unit, University of Bern, Bern, Switzerland, 8 pp

  • Hünicke B, Zorita E, Soomere T, Madsen KS, Johansson M, Suursaar Ü (2015) Recent change—sea level and wind waves. Second assessment of climate change for the Baltic Sea Basin. pp 155–185. doi:10.1007/978-3-319-16006-1_9. Print ISBN 978-3-319-16005-4, Online ISBN 978-3-319-16006-1

  • Ishii M, Kimoto M (2009) Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J Oceanogr 65:287–299

    Article  Google Scholar 

  • Jevrejeva S, Grinsted A, Moore JC, Holgate S (2006) Nonlinear trends and multiyear cycles in sea level records. J Geophys Res 111:C09012. doi:10.1029/2005JC003229

    Article  Google Scholar 

  • Jevrejeva S, Moore JC, Grinsted A, Woodworth PL (2008) Recent global sea level acceleration started over 200 years ago? Geophys Res Lett 35:L08715

    Article  Google Scholar 

  • Jevrejeva S, Grinsted A, Moore JC (2009) Anthropogenic forcing dominates sea level rise since 1850. Geophys Res Lett 36:L20706. doi:10.1029/2009GL040216

    Article  Google Scholar 

  • Jordà G (2014) Detection time for global and regional sea level trends and accelerations. J Geophys Res Oceans 119(10):7164–7174. doi:10.1002/2014JC010005

    Article  Google Scholar 

  • Kantelhardt JW, Koscielny-Bunde E, Rego HH, Havlin S, Bunde A (2001) Detecting long-range correlations with detrended fluctuation analysis. Phys A 295(3):441–454

    Article  Google Scholar 

  • Kemp AC, Horton BP, Donelly JP, Mann ME, Vermeer M, Rahmstorf S (2011) Climate related sea-level variations over the past two millennia. Proc Natl Acad Sci USA 105:13252–13257

    Google Scholar 

  • Köhl A, Stammer D, Cornuelle B (2007) Interannual to Decadal Changes in the ECCO Global Synthesis. J Phys Oceanogr 37(2):313–337. doi:10.1175/JPO3014.1

    Article  Google Scholar 

  • Kopp RE, Kemp AC, Bittermann K, Horton BP, Donnelly JP, Gehrels WR, Hay CC, Mitrovica JX, Morrow ED, Rahmstorf S (2016) Temperature-driven global sea-level variability in the Common Era. PNAS 113(11):E1434–E1441. doi:10.1073/pnas.1517056113

    Article  Google Scholar 

  • Kuo CY, Shum CK, Braun A, Cheng KC, Yi Y (2008) Vertical motion determined using satellite altimetry and tide gauges. Terr Atmos Ocean Sci 19(1–2):21–35

    Article  Google Scholar 

  • Leclercq PW, Oerlemans J, Basagic HJ, Bushueva I, Cook AJ, Le Bris R (2014) A data set of worldwide glacier length fluctuations. Cryosphere 8:659–672

    Article  Google Scholar 

  • Letetrel C, Karpytchev M, Bouin M-N, Marcos M, Santamaría-Gómez A, Wöppelmann G (2015) Estimation of vertical land movement rates along the coasts of the Gulf of Mexico over the past decades. Cont Shelf Res 111:42–51

    Article  Google Scholar 

  • Levermann A Peter, Clark U, Marzeion Ben, Milne Glenn A, Pollard David, Radic Valentina, Robinsonh Alexander (2013) The multimillennial sea-level commitment of global warming. PNAS 110(34):13745–13750. doi:10.1073/pnas.1219414110

    Article  Google Scholar 

  • Levitus S, Antonov JI, Boyer TP, Locarnini RA, Garcia HE, Mishonov AV (2009) Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems, Geophys Res Lett 36(7). doi:10.1029/2008GL037155

  • Levitus S et al (2012) World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys Res Lett 39:L10603. doi:10.1029/2012GL051106

    Article  Google Scholar 

  • Lyman JM, Johnson Gregory C (2014) Estimating global ocean heat content changes in the upper 1800 m since 1950 and the influence of climatology choice. J Clim 27:1945–1957. doi:10.1175/JCLI-D-12-00752.1

    Article  Google Scholar 

  • Lyu K, Zhang X, Church JA, Slangen ABA, Hu J (2014) Time of emergence for regional sea-level change. Nat Clim Change 4(11):1006–1010. doi:10.1038/nclimate2397

    Article  Google Scholar 

  • Marcos M, Amores A (2014) Quantifying anthropogenic and natural contributions to thermosteric sea level rise. Res Lett, Geophys. doi:10.1002/2014GL059766

    Google Scholar 

  • Marcos M, Tsimplis MN (2007) Forcing of coastal sea level rise patterns in the North Atlantic and the Mediterranean Sea. Geophys Res Lett 34:L18604. doi:10.1029/2007GL030641

    Article  Google Scholar 

  • Marzeion B, Cogley JG, Richter K, Parkes D (2014) Attribution of global glacier mass loss to anthropogenic and natural causes. Science 345:919–921

    Article  Google Scholar 

  • McGregor S, Gupta AS, England MH (2012) Constraining wind stress products with sea surface height observations and implications for Pacific Ocean sea level trend attribution*. J Clim 25(23):8164–8176. doi:10.1175/JCLI-D-12-00105.1

    Article  Google Scholar 

  • Merrifield MA (2011) A shift in western tropical Pacific sea level trends during the 1990s. J Clim 24(15):4126–4138. doi:10.1175/2011JCLI3932.1

    Article  Google Scholar 

  • Merrifield MA, Maltrud ME (2011) Regional sea level trends due to a Pacific trade wind intensification. Geophys Res Lett. doi:10.1029/2011GL049576

    Google Scholar 

  • Merrifield MA, Thompson PR, Lander M (2012) Multidecadal sea level anomalies and trends in the western tropical Pacific. Geophys Res Lett. doi:10.1029/2012GL052032

    Google Scholar 

  • Meyssignac B, Salas D, Melia Y, Becker M, Llovel W, Cazenave A (2012) Tropical Pacific spatial trend patterns in observed sea level: internal variability and/or anthropogenic signature? Clim Past 8(2):787–802. doi:10.5194/cp-8-787-2012

    Article  Google Scholar 

  • Monselesan DP, O’Kane TJ, Risbey JS, Church J (2015) Internal climate memory in observations and models. Geophys Res Lett 42:1232–1242. doi:10.1002/2014GL062765

    Article  Google Scholar 

  • Nidheesh AG, Lengaigne M, Vialard J, Unnikrishnan AS, Dayan H (2013) Decadal and long-term sea level variability in the tropical Indo-Pacific Ocean. Clim Dyn 41(2):381–402. doi:10.1007/s00382-012-1463-4

    Article  Google Scholar 

  • Oerlemans J (1988) Simulation of historic glacier variations with a simple climate-glacier model. J Glaciol 34:333–341

    Google Scholar 

  • Palanisamy H, Meyssignac B, Cazenave A, Delcroix T (2015a) Is anthropogenic sea level fingerprint already detectable in the Pacific Ocean? Environ Res Lett 10(8):084024. doi:10.1088/1748-9326/10/8/084024

    Article  Google Scholar 

  • Palanisamy H, Cazenave A, Delcroix T, Meyssignac B (2015b) Spatial trend patterns in the Pacific Ocean sea level during the altimetry era: the contribution of thermocline depth change and internal climate variability. Ocean Dyn. doi:10.1007/s10236-014-0805-7

    Google Scholar 

  • Pfeffer J, Allemand P (2016) The key role of vertical land motions in coastal sea level variations: a global synthesis of multisatellite altimetry, tide gauge data and GPS measurements. Earth Planet Sci Lett 439:39–47. doi:10.1016/j.epsl.2016.01.027

    Article  Google Scholar 

  • Piecuch CG, Ponte RM (2015) Inverted barometer contributions to recent sea level changes along the northeast coast of North America. Geo Phys Res Lett 42:5918–5925. doi:10.1002/2015GL064580

    Article  Google Scholar 

  • Pirazzoli PA (1987) Recent sea-level changes and related engineering problems in the lagoon of Venice (Italy). Prog Oceanogr 18:323–346. doi:10.1016/0079-6611(87)90038-3

    Article  Google Scholar 

  • Raucoules D et al (2008) Ground deformation detection of the greater area of Thessaloniki (northern Greece) using radar interferometry techniques. Nat Hazards Earth Syst Sci 8:779–788. doi:10.5194/nhess-8-779-2008

    Article  Google Scholar 

  • Reichert BK, Bengtsson L, Oerlemans J (2002) Recent glacier retreat exceeds internal variability. J Clim 15:3069–3081

    Article  Google Scholar 

  • Richter K, Marzeion B (2014) Earliest local emergence of forced dynamic and steric sea-level trends in climate models. Environ Res Lett 9(11):114009. doi:10.1088/1748-9326/9/11/114009

    Article  Google Scholar 

  • Roe GH, Baker MB (2014) Glacier response to climate perturbations: an accurate linear geometric model. J Glaciol 60:670–684

    Article  Google Scholar 

  • Santamaría-Gómez A, Gravelle M, Wöppelmann G (2014) Long-term vertical land motion from double-differenced tide gauge and satellite altimetry data. J Geodesy 88:207–222. doi:10.1007/s00190-013-0677-5

    Article  Google Scholar 

  • Saramul S, Ezer T (2014) Spatial variations of sea level along the coast of Thailand: impacts of extreme land subsidence, earthquakes and the seasonal monsoon. Global Planet Changes 122:70–81. doi:10.1016/j.gloplacha.2014.08.012

    Article  Google Scholar 

  • Schöne T, Illigner J, Manurung P, Subarya C, Khafid Zech C, Galas R (2011) GPS-controlled tide gauges in Indonesia a German contribution to Indonesia’s Tsunami Early Warning System. Nat Hazards Earth Syst Sci 11:731–741

    Article  Google Scholar 

  • Simons WJF, Socquet A, Vigny A, Ambrosius BAC, Abu SH, Promthong C, Subarya C, Sarsito DA, Matheussen S, Morgan P, Spakman W (2007) A decade of GPS in Southeast Asia: resolving Sundaland motion and boundaries. J Geophys Res 112(B06420). doi:10.1029/2005JB003868

  • Slangen ABA, Church JA, Zhang X, Monselesan D (2014) Detection and attribution of global mean thermosteric sea-level change. Geophys Res Lett 41(16):5951–5959. doi:10.1002/2014GL061356

    Article  Google Scholar 

  • Slangen ABA, Church JA, Zhang X, Monselesan D (2015) The sea-level response to external forcings in CMIP5 climate models. J Clim. doi:10.1175/JCLI-D-15-0376.1

    Google Scholar 

  • Slangen ABA, Church JA, Agosta C, Fettweis X, Marzeion B, Richter K (2016) Anthropogenic forcing dominates global mean sea-level rise since 1970 Nat Climate Change. doi:10.1038/nclimate2991

  • Stammer D, Cazenave A, Ponte RM, Tamisiea ME (2013) Causes for contemporary regional sea level changes. Annu Rev Mar Sci. doi:10.1146/annurev-marine-121211-172406

    Google Scholar 

  • Thompson PR, Merrifield Mark A, Wells Judith R, Chang Chantel M (2014) Wind-driven coastal sea level variability in the northeast pacific. J Clim 27:4733–4751. doi:10.1175/JCLI-D-13-00225.1

    Article  Google Scholar 

  • Timmermann A, McGregor S, Jin F-F (2010) Wind effects on past and future regional sea level trends in the southern Indo-Pacific*. J Clim 23(16):4429–4437. doi:10.1175/2010JCLI3519.1

    Article  Google Scholar 

  • Trisirisatayawong I, Naeije M, Simons W, Fenoglio-Marc L (2011) Sea level change in the Gulf of Thailand from GPS-corrected tide gauge data and multi-satellite altimetry. Global Planet Change 76:137–151

    Article  Google Scholar 

  • Veit E, Conrad CP (2016) The impact of groundwater depletion on spatial variations in sea level change during the past century. Geophys Res Lett 43:3351–3359. doi:10.1002/2016GL068118

    Article  Google Scholar 

  • Venzke S, Allen MR, Sutton RT, Rowell DP (1999) The atmospheric response over the North Atlantic to decadal changes in sea surface temperature. J Clim 12:2562–2584

    Article  Google Scholar 

  • Wakelin SL, Woodworth PL, Flather RA, Williams JA (2003) Sea-level dependence on the NAO over the NW European Continental Shelf. Geophys Res Lett 30(7):1403. doi:10.1029/2003GL017041

    Article  Google Scholar 

  • Wöppelmann G, Marcos M (2012) Coastal sea level rise in southern Europe and the nonclimate contribution of vertical land motion. J Geophys Res 117:C01007. doi:10.1029/2011JC007469

    Article  Google Scholar 

  • Wöppelmann G, Marcos M (2016) Vertical land motion as a key to understanding sea level change and variability. Rev Geophys. doi:10.1002/2015RG000502

    Google Scholar 

  • Wöppelmann G, Marcos M, Santamaría-Gómez A, Martín-Míguez B, Bouin M-N, Gravelle M (2014) Evidence for a differential sea level rise between hemispheres over the twentieth century. Geophys Res Lett 41:1639–1643. doi:10.1002/2013GL059039

    Article  Google Scholar 

  • Wunsch Carl, Heimbach Patrick (2014) Bidecadal thermal changes in the abyssal ocean. J Phys Oceanogr 44:2013–2030. doi:10.1175/JPO-D-13-096.1

    Article  Google Scholar 

  • Zhang X, Church JA (2012) Sea level trends, interannual and decadal variability in the Pacific Ocean. Geophys Res Lett. doi:10.1029/2012GL053240

    Google Scholar 

Download references

Acknowledgments

M. Marcos acknowledges a “Ramon y Cajal” contract funded by the Spanish Ministry of Economy. This work was supported by the Research Project CLIMPACT (CGL2014-54246-C2-1-R) funded by the Spanish Ministry of Economy. S. Dangendorf acknowledges a Visiting Research Grant from the University of the Balearic Islands. A. Slangen is supported by a CSIRO Office of the Chief Executive Fellowship. H. Palanisamy is supported by a CNES/CLS Ph.D. fund. L. Fenoglio acknowledges the support by DFG in the frame of the COSELE Project. This paper is an outcome of the ISSI workshop on “Integrative study of sea level”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Marcos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcos, M., Marzeion, B., Dangendorf, S. et al. Internal Variability Versus Anthropogenic Forcing on Sea Level and Its Components. Surv Geophys 38, 329–348 (2017). https://doi.org/10.1007/s10712-016-9373-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-016-9373-3

Keywords

Navigation