Skip to main content

Advertisement

Log in

Approaches to Solving the Maximum Possible Earthquake Magnitude (Mmax) Problem

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The problem of evaluation of the maximum possible regional earthquake magnitude (Mmax) is reviewed and analyzed. Two aspects of this topic are specified: statistical, and historical and paleoseismic. The frequentist and the fiducial approaches used in the problem are analyzed and compared. General features of the Bayesian approach are discussed within the framework of the Mmax problem. A useful connection between quantiles of a single event and maximum event in a future time interval T is derived. Various estimators of Mmax used in seismological practice are considered and classified. Different methods of estimation are compared: the statistical moment method, the Bayesian method, the estimators based on the extreme value theory (EVT), the estimators using order statistics. A comparison of several well-known estimators of Mmax in the framework of the truncated Gutenberg–Richer law is made. As a more adequate and stable alternative to Mmax the quantiles Qq(T) of maximum earthquake considered in future time horizon T are proposed and analyzed. These quantiles permit us to select a time horizon T and quantile level q for a reliable estimation of maximum possible magnitudes. The instability of Mmax-estimates compared to Qq(T)-estimates is demonstrated. The main steps of the Qq(T)-quantile estimation procedure are highlighted. The historical and paleoseismic data are used, and an additional evidence of low robustness of Mmax-parameter is found. The evidence of possibility of earthquake magnitudes well exceeding the Mmax-value obtained for the truncated Gutenberg–Richter law is found also. The present situation in the domain of the Mmax-evaluation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References.

  • Anbazhagan P, Bajaj K, Sayed SR, Moustafa NSN, Al-Arifi (2015) Maximum magnitude estimation considering the regional rupture character. J Seismol 19:695–719. https://doi.org/10.1007/s10950-015-9488-x

    Article  Google Scholar 

  • Anderson JG, Wesnousky SG, Stirling MW (1996) Earthquake size as a function of fault slip rate. Bull Seismol Soc Am 86(3):683–690

    Google Scholar 

  • Bakun WH et al (2005) Implications for prediction and hazard assessment from the 2004 Parkfield earthquake. Nat 437:969–974

    Article  Google Scholar 

  • Bassi, F., P. Embrechts, M. Kafetzaki (1998) Risk management and quantile estimation, In R.Adler, R.Feldman, M.Taqqu, Berlin, Birkhause (eds) A Practical Guide to Heavy Tails, pp. 111–130.

  • Beirlant J, Fraga Alves I, Reynkens T (2017) Fitting tails affected by truncation. Electron J Stat 11:2026–2065

    Article  Google Scholar 

  • Beirlant J, Kijko A, Reynkens T, Einmahl J (2019) Estimating the maximum possible earthquake magnitude using extreme value methodology: the Groningen case. Nat Hazards 98:1091–1113

    Article  Google Scholar 

  • Bolshev L., N. Smirnov (1983) Tables of Mathematical Statistics, Moscow, Nauka, 416 p. (in Russian).

  • Bommer JJ, van Elk J (2017) Comment on “The maximum possible and the maximum expected earthquake magnitude for production-induced earthquakes at the gas field in Groningen, The Netherlands” by Gert Zoller and Matthias Holschneider. Bull Seismol Soc Am 107(3):1564–1567

    Article  Google Scholar 

  • Burroughs SM, Tebbens SF (2001) Upper-truncated power laws in natural systems. Pure Appl Geophys 158(4):741–757

    Article  Google Scholar 

  • Coles S, Dixon M (1999) Likelihood-based Inference for extreme value models. Extremes 2(1):5–23

    Article  Google Scholar 

  • Cooke P (1979) Statistical inference for bounds of random variables. Biometrika 66(2):367–374

    Article  Google Scholar 

  • Cosentino P, Ficara V, Luzio D (1977) Truncated exponential frequency-magnitude relationship in the earthquake statistics. Bull Seism Soc Am 67:1615–1623

    Article  Google Scholar 

  • Cramer H (1946) Mathematical methods of statistics. Princeton University Press, Princeton

    Google Scholar 

  • Dargahi-Noubary GR (1983) A procedure for estimation of the upper bound for earthquake magnitudes. Phys Earth Planet Inter 33:91–93

    Article  Google Scholar 

  • Dargahi-Noubary GR (2000) Statistical methods for earthquake hazard assessment and risk analysis. Nova Science Publishers, Huntington, NY

    Google Scholar 

  • De Haan L (2006) Extreme value theory, An Introduction. Springer, NY

    Book  Google Scholar 

  • Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Statist 7(1):1–26

    Article  Google Scholar 

  • Ellsworth W.L. (1995) Characteristic earthquakes and long-term earthquake forecasts: Implications of central California seismicity. Urb Disaster Mitig: Role Eng Technol, 1–14.

  • Embrechts P, Kluppelberg C, Mikosch T (1997) Modelling extremal events. Springer, Berlin

    Book  Google Scholar 

  • Feller W (1957) Introduction to probability theory and its applications, vol 1. Wiley, New York

    Google Scholar 

  • Field DH, Jackson DD, Dolan JF (1999) A mutually consistent seismic-hazard source model for Southern California. Bull Seismol Soc Am 89:559–578

    Article  Google Scholar 

  • Gasperini, P., Camassi, R., Mirto, C., Stucchi, M. (2004) Catalogo Parametrico dei Terremoti Italiani, versione 2004 (CPTI04). INGV, Bologna. http://emidius.mi.ingv.it/CPTI04

  • Godano C (2015) A new expression for the earthquake interevent time distribution. Geophys J Int 202:219–223

    Article  Google Scholar 

  • Goldfinger C, Morey AE, Nelson CH, Gutierrez-Pastor J, Johnson JE, Karabanov E, Chaytor J, Ericsson A (2007) Rupture lengths and temporal history of significant earthquakes on the offshore and north coast segments of the northern San Andreas fault based on turbidite stratigraphy, Earth Planet. Sci Lett 254:9–27

    Google Scholar 

  • Goldfinger, C., C. H. Nelson, A. E. Morey, J. E. Johnson, J. R. Patton, E. Karabanov, J. Gutiérrez-Pastor, A. T. Eriksson, E. Gràcia, G. Dunhill, R. J. Enkin, A. Dallimore, and T. Vallier (2012). Turbidite event history—Methods and implications for Holocene paleoseismicity of the Cascadia subduction zone, U.S. Geol. Surv. Profess. Pap. 1661-F, 170 pp.

  • Gorshkov A, Gaudemer Y (2019) Seismogenic modes defined with pattern recognition in the French Massiv Central. J Iber Geol 45(1):63–72

    Article  Google Scholar 

  • Grünthal G, Wahlström R (2012) The European-Mediterranean Earthquake Catalogue (EMEC) for the last millennium. J Seismolog. https://doi.org/10.1007/s10950-012-9302-y

    Article  Google Scholar 

  • Gumbel EJ (1958) Statistics of extremes. Columbia University Press, New York

    Book  Google Scholar 

  • Gutenberg B, Richter C (1954) Seismicity of the earth, 2nd edn. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Gutenberg B, Richter C (1956) Earthquake magnitude, intensity, energy, and acceleration, part II. Bull Seism Soc Am 46:105–145

    Article  Google Scholar 

  • Holschneider M, Zoller G, Hainzl S (2011) Estimation of the maximum possible magnitude in the framework of the doubly truncated Gutenberg-Richter model. Bull Seismol Soc Am 101(4):1649–1659

    Article  Google Scholar 

  • Ibragimov I.A. , Hasminskii R.Z. (1976) Statistical estimation: Asymptotic Theory, “Nauka”, Moscow, 527 p. (in Russian). English translation: Statistical estimation: Asymptotic Theory, Springer-Verlag, 1981, NY.

  • Ismail-Zadeh A, Müller B, Schilling F, Gorshkov A, Soloviev A, Adamia S, Chabukiani A, Chelidze T, Kiria J, Mumladze T, Sadradze N, Cloetingh S, Floyd M, Gvishiani A, Ismail-Zadeh T, Kadirov F, Kangarli T, Safarov R, Kaban MK, Karapetyan J et al (2020) Geodynamics, seismicity, and seismic hazard of the Caucasus. Earth-Sci Rev 207:103222

    Article  Google Scholar 

  • Jackson, D. D., and Y. Y. Kagan (2011). Characteristic earthquakes and seismic gaps, In: Encyclopedia of Solid Earth Geophysics, Gupta, H. K. (Ed.), Springer, pp. 37–40, https://doi.org/10.1007/978-90-481-8702-7

  • Jeffreys H (1961) Theory of probability, 3rd edn. Clarendon Press, Oxford, London

    Google Scholar 

  • Jin A, Aki K (1988) Spatial and Temporal Correlation between Coda Q and Seismicity in China. Bull Seismol Soc Am 78:741–769

    Article  Google Scholar 

  • Kagan YY (1993) Statistics of characteristic earthquakes. Bull Seismol Soc Am 83(1):7–24

    Google Scholar 

  • Kagan YY (1997a) Seismic moment-frequency relation for shallow earthquakes: Regional comparison. J Geophys Res 102:2835–2852

    Article  Google Scholar 

  • Kagan YY (1997b) Earthquake size distribution and earthquake insurance. Commun Statist Stachastic Models 13(4):775–797

    Article  Google Scholar 

  • Kagan YY (1999) Universality of the seismic moment-frequency relation. Pure Appl Geophys 155:537–573

    Article  Google Scholar 

  • Kagan YY (2002a) Seismic moment distribution revisited: I Statistical results. Geophys J Int 148:520–541

    Article  Google Scholar 

  • Kagan YY (2002b) Seismic moment distribution revisited: II Moment conservation principle. Geophys J Int 149:731–754

    Article  Google Scholar 

  • Kagan YY, Jackson DD (2013) Tohoku earthquakes: a surprise? Bull Seismol Soc Am 103(B2):1181–1194

    Article  Google Scholar 

  • Kagan YY, Schoenberg F (2001) Estimation of the upper cutoff parameter for the tapered Pareto distribution. J Appl Probab 38(A):158–175

    Article  Google Scholar 

  • Kagan YY, Jackson D, Geller RJ (2012) Characteristic earthquake model, 1884–2011, RIP. Seismol Res Lett 83(6):951–953. https://doi.org/10.1785/0220120107

    Article  Google Scholar 

  • Keilis-Borok VI (1990) The lithosphere of the Earth as a nonlinear system with implications for earthquake prediction. Rev Geophys 28:19–34. https://doi.org/10.1029/RG028i001p00019

    Article  Google Scholar 

  • Kendall M, Stuart A (1961) The advanced theory of statistics, vol 2. Griffin, London

    Google Scholar 

  • Kijko A (2004) Estimation of the maximum earthquake magnitude Mmax. Pure Appl Geophys 161(8):1655–1681

    Article  Google Scholar 

  • Kijko A (2012) On Bayesian procedure for maximum earthquake magnitude estimation. Res Geophys 2(1):46–51

    Article  Google Scholar 

  • Kijko A, Graham G (1998) Parametric-historic procedure for probabilistic seismic hazard analysis part I: Estimation of maximum regional magnitude Mmax. Pure Appl Geophys 152(3):413–442

    Article  Google Scholar 

  • Kijko A., M.A.Sellevoll (1989) Estimation of earthquake hazard parameters from incomplete data files. Part I. Utilization of extreme and complete catalogs with different threshold magnitudes. Bull. Seism. Soc. Amer. V.79. 645–654. Part II. Incorporation of magnitude heterogeneity. Bull. Seism. Soc. Amer. V.82. 120–134.

  • Kijko A., M.A.Sellevoll (1992) Estimation of earthquake hazard parameters from incomplete data files. Part I. Utilization of extreme and complete catalogs with different threshold magnitudes. Bull. Seism. Soc. Amer. V.79. 645–654. Part II. Incorporation of magnitude heterogeneity. Bull. Seism. Soc. Amer. V.82. 120–134.

  • Kijko A, Singh M (2011) Statistical tools for maximum possible earthquake estimation. Acta Geophys 59(4):674–700

    Article  Google Scholar 

  • Kolmogorov AN (1933) Grundberiffe der Warscheinlichkeitsrechnung. Springer, Berlin

    Book  Google Scholar 

  • Kullback S (1958) Information theory and statistics. Chapman & Hall, New York

    Google Scholar 

  • Lasocki S, Urban P (2011) Bias, variance and computational properties of Kijko’s estimators of the upper limit of magnitude distribution. Mmax Acta Geophys 59(4):659–673

    Article  Google Scholar 

  • Lee WHK, Wu FT, Jacobse C (1976) A catalog of historical earthquakes in China compiled from recent Chinese publications. Bull Seismol Soc Am 66(6):2003–2016

    Article  Google Scholar 

  • Lengliné O, Marsan D (2009) Inferring the coseismic and postseismic stress changes caused by the 2004 Mw_6 Parkfield earthquake from variations of recurrence times of microearthquakes. J Geophys Res. https://doi.org/10.1029/2008JB006118

    Article  Google Scholar 

  • Lysenko V.B., V.F. Pisarenko (1994) Low-frequency spectrum asymptotics as a measure of non-stationarity for some geophysical processes, Geodynamics and earthquake prediction (Computational Seismology, Iss. 26, M.: Nauka, 45–57. (in Russian)

  • Lyubushin AA, Tsapanos TM, Pisarenko VF, Koravos GCh (2002) Seismic hazard for selected sites in Greece: A Bayesian estimates of seismic peak ground acceleration. Nat Hazard 25(1):83–89

    Article  Google Scholar 

  • Lyubushin AA, Parvez IA (2010) Map of seismic hazard of India using Bayesian approach. Nat Hazard 55(2):543–556

    Article  Google Scholar 

  • Marsan D, Tan YJ (2020) Maximum earthquake size and seismicity rate from an ETAS model with slip budget. Bull Seismol Soc Am 110:874–885. https://doi.org/10.1785/0120190196

    Article  Google Scholar 

  • Michael AJ (2014) How complete is the ISC-GEM global earthquake catalog? Bull Seismol Soc Am 104(4):1829–1837. https://doi.org/10.1785/0120130227

    Article  Google Scholar 

  • Mirlin EG, Mironov YuV, Rodkin MV, Chesalova EI (2018) Intraplate seamounts of the Northwest Sector of the Pacific Ocean. Oceanol 58(2):290–300

    Article  Google Scholar 

  • Morell KD, Styron R, Stirling M, Griffin J, Archuleta R, Onur T (2020) Seismic hazard analyses from geologic and geomorphic data: Current and future challenges. Tecton 39:e2018TC005365. https://doi.org/10.1029/2018TC005365

    Article  Google Scholar 

  • Onderdonk, N., McGill, S., and Rockwell, T. (2018) A 3700 yr paleoseismic record from the northern San Jacinto fault and implications for joint rupture of the San Jacinto and San Andreas faults, Geosphere, 14(6), 2447–2468, https:// doi .org/10 .1130/GES01687.1.

  • Parsons T, Console R, Falcone G, Murru M, Yamashina K (2012) Comparison of characteristic and Gutenberg-Richter models for time-dependent M ≥ 7.9 earthquake probability in the Nankai-Tokai subduction zone. Japan Geophys J Int 190:1673–1688

    Article  Google Scholar 

  • Parsons T, Geist EL, Console R, Carluccio R (2018) Characteristic earthquake magnitude frequency distributions on faults calculated from consensus data in California. J Geophys Res: Solid Earth 123:10761–10784

    Google Scholar 

  • Pisarenko VF (1991) Statistical estimation of the maximum possible earthquake. Fizika Zemli 9:38–46, (in Russian). English translation: Pisarenko VF (1991) Statistical evaluation of maximum possible magnitude. Izvestiya Earth Phys 27:757–763

    Google Scholar 

  • Pisarenko V.F.(2018) The Notion of Probability and Difficulties of Interpretation, Herald of the Russian Academy of Sciences, 88(4), 289–293,© Pleiades Publishing, Ltd., 2018.

  • Pisarenko VF, Lyubushin AA, Lysenko VB, Golubeva TV (1996) Statistical estimation of seismic hazard parameters: maximal possible magnitude and related parameters. Bull Seismol Soc Am 86(3):691–700

    Article  Google Scholar 

  • Pisarenko VF, Lyubushin AA (1997) Statistical estimation of maximum peak ground acceleration at a given point of seismic region. J Seismol 1:395–405

    Article  Google Scholar 

  • Pisarenko VF, Lyubushin AA (1999) Bayesian approach to seismic hazard estimation: maximum values of magnitudes and peak ground accelerations. Earthq Res China (english Edition) 13(1):47–59

    Google Scholar 

  • Pisarenko V.F., M.V.Rodkin (2007) The Distributions with Heavy Tails: Application to Disaster Analysis, Comput Seismol, Issue 38, GEOS, Moscow, 240 p. (in Russian)

  • Pisarenko VF, Rodkin MV (2009) Instability of parameter Mmax and an alternative to its using. Phys Solid Earth 45:1081. https://doi.org/10.1134/S1069351309120052

    Article  Google Scholar 

  • Pisarenko VF, Rodkin MV (2010a) Heavy-tailed distributions in disaster analysis. Springer, New York

    Book  Google Scholar 

  • Pisarenko VF, Rodkin MV (2010b) Distribution of maximum earthquake magnitudes in future time intervals: application to the seismicity of Japan (1923–2007). Earth Planets Space 62:1–12

    Article  Google Scholar 

  • Pisarenko V, Rodkin M (2014) Statistical Analysis of natural disasters and related losses. Springer, Dordrecht-Heidelberg-London-New York, p 82

    Book  Google Scholar 

  • Pisarenko VF, Rodkin MV (2015) The maximum earthquake considered in future T years: Checking by a real catalog. Chaos, Solitons Fractals 74:89–98

    Article  Google Scholar 

  • Pisarenko VF, Rodkin MV (2017) The estimation of probability of extreme events for small samples. Pure Appl Geophys 174(4):1547–1560

    Article  Google Scholar 

  • Pisarenko VF, Rodkin MV (2013) The new quantile approach: application to the seismic risk assessment. In: Rascobic B, Mrdja S (eds) Natural disasters: prevention, risk factors and management. NOVA Publishers, New York, pp 141–174

    Google Scholar 

  • Pisarenko V.F., M.V. Rodkin (2019) Declusterisation of the seismic flow, statistical analysis, Fizika Zemli, No.5, 1–15, (in Russian). English translation: Pisarenko V.F., M. V. Rodkin. Declustering of Seismicity Flow: Statistical Analysis. ISSN 1069–3513, Izvestiya, Physics of the Solid Earth, 2019, Vol. 55, No. 5, pp. 733–745.

  • Pisarenko V.F., M.V. Rodkin, T.A. Rukavishnikova (2020) A stable modification of the seismic recurrence law and perspectives of its application to the seismic zoning, Fizika Zemli, No.1, 62–76, (in Russian). English translation: Pisarenko V.F., M.V. Rodkin, T.A.Rukavishnikova. Stable Modification of Frequency–Magnitude Relation and Prospects for Its Application in Seismic Zoning. Izvestiya, Physics of the Solid Earth, 2020, Vol. 56, No. 1, pp. 53–65.

  • Pisarenko V.F., A.A.Lyubusin, M.V. Rodkin (2021) Maximum Earthquakes in Future Time Intervals, Fizika Zimli, No.2, 1–19(in Russian). English translation: Maximum Earthquakes in Future Time Intervals, Izvestiya, Phys. Solid Earth, 2021, 57(32), 163–179.

  • Pisarenko VF, Sornette D (2003) Characterization of the frequency of extreme earthquake events by the generalized pareto distribution. Pure Appl Geophys 160:2343–2364

    Article  Google Scholar 

  • Pisarenko VF, Sornette A, Sornette D, Rodkin MV (2008) New approach to characterization of Mmax and the tail of distribution of earthquake magnitudes. Pure Appl Geophys 65:847–888

    Article  Google Scholar 

  • Pisarenko VF, Sornette D, Rodkin MV (2010) Distribution of maximum earthquake magnitudes in future time intervals: application to the seismicity of Japan (1923–2007). Earth Planets Space 62:567–578

    Article  Google Scholar 

  • Pisarenko VF, Sornette A, Sornette D, Rodkin MV (2014) Characterization of the tail of the distribution of earthquake magnitudes by combining the GEV and GPD descriptions of extreme value theory. Pure Appl Geophys 171(8):1599–1624

    Article  Google Scholar 

  • Rodkin M.V.(2011) Alternative to SOC Concept—Model of Seismic Regime as a Set of Episodes of Random Avalanche-Like Releases Occurring on a Set of Metastable Subsystems ISSN 1069_3513, Izvestiya, Physics of the Solid Earth, Vol. 47, No. 11, pp. 966–973. © Pleiades Publishing, Ltd., 2011.

  • Rong Y., D.D. Jackson, H. Magistrale, and C.Goldfinger (2014) Magnitude Limits of Subduction Zone Earthquakes. Bull Seismol Soc Am, 104(5) doi: https://doi.org/10.1785/0120130287.

  • Savage L. The Foundations of Statistical Inference, a Discussion (1962) London, Methuen.

  • Sherman SI, Rodkin MV, Gorbunova EA (2017) A Tectonophysical Analysis of Earthquake Frequency-Size Relationship Types for Catastrophic Earthquakes in Central Asia. J Volcanol Seismolog 11(6):434–446

    Article  Google Scholar 

  • Seismic Hazards in Southern California: Probable Earthquakes, 1994 to 2024 by Working Group on California Earthquake Probabilities (1995) Bulletin of the Seismological Society of America, 85(2), 379–439.

  • Smith RL (1990) Extreme value theory. Wiley, Chichester

    Google Scholar 

  • Stark P.B.(2017) Pay No Attention to the Model Behind the Curtain. Preprint, Univ. of California, Berkeley 21 p. https://www.stat.berkeley.edu/-stark/Preprints/eucCurtain15.pdf

  • Stein S, Friedrich A, Newman A (2005) Dependence of Possible Characteristic Earthquakes on Spatial Sampling: Illustration for the Wasatch Seismic Zone. Utah Seismological Research Letters 76(4):432–436

    Article  Google Scholar 

  • Strasser FO, Arango MC, Bommer JJ (2010) Scaling of the Source Dimensions of Interface and Intraslab Subduction-zone Earthquakes with Moment Magnitude. Seismol Res Lett 81(6):941–950

    Article  Google Scholar 

  • Stephens MA (1974) EDF statistics for goodness of fit and some comparisons. J Am Stat Assoc 68(347):730–737

    Article  Google Scholar 

  • Sykes, L. Quittmeyer, R. (1981) Repeat times of great earthquakes along simple plate boundaries International Review, Earthquake prediction, Wash., pp. 217–247.

  • Tate RF (1959) Unbiased Estimation: Functions of Location and scale parameters. Annals Math Stat 3(2):341–366

    Article  Google Scholar 

  • Vermeulen P, Kijko A (2017) More statistical tools for maximum possible earthquake magnitude estimation. Acta Geophys. https://doi.org/10.1007/s11600-017-0048-3

    Article  Google Scholar 

  • Ward SN (1997) More on Mmax. Bull Seismol Soc Am 87(5):1199–1208

    Article  Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. BSSA 84(4):974–1002

    Google Scholar 

  • Wesnousky SG (1994) The Gutenberg-Richter or characteristic earthquake distribution, which is it? Bull Seism Soc Am 84:1940–1959

    Article  Google Scholar 

  • Wheeler R. (2009) Methods of Mmax Estimation, East of Rocky Mountains, Open-File Report 2009–1018, USGS, Reston, Virginia.

  • Zöller G, Hainzl S, Ben-Zion Y, Holschneider M (2009) Seismicity, critical states of: from models to practical seismic hazard estimates space. In: Meyers R (ed) Encyclopedia of Complexity and Systems Science. Springer, New York, NY

    Google Scholar 

  • Zentner I, Ameri G, Viallet E (2020) Bayesian Estimation of the Maximum Magnitude Mmax Based on the Extreme Value Distribution for Probabilistic Seismic Hazard Analysis, Pure Appl. Geophys 177:5643–5660

  • Zoller G, Holschneider M, Hainzl S (2013) The maximum Earthquake Magnitude in a Time Horizon: Theory and Case Studies. BSSA 103(2A):860–875

    Google Scholar 

  • Zoller G (2013) Convergence of the frequency-magnitude distribution of global earthquakes: Maybe in 200 years. Geophys Res Lett 40:3873–3877

    Article  Google Scholar 

  • Zoller G, Holschneider M (2016) The maximum possible and the maximum expected earthquake magnitude for production-induced earthquakes at the gas field in Groningen. Netherlands Bull Seismol Soc Am 106(6):2917–2921

    Article  Google Scholar 

  • Zoller G (2016) The Earthquake History in a Fault Zone Tells Us Almost Nothing about mmax. Seismol Res Lett 87(1):1–6

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank T. Prokhorova, A. Lyubushin, A. Petrosyan and D. Pisarenko for their valuable assistance in preparing this paper and A.Kijko for his kind help with references. Our particular gratitude should be expressed to the anonymous reviewers for their attentive, thorough reviews that have improved substantially the text. We also thank M. Rycroft, Editor in Chief, for his editorial improvements to our article.

Funding

The authors appreciate partial support from the Russian Foundation for Basic Research № 20–05-00433.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Rodkin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Let us consider function

$$G(M_{\max } ) = M_{\max } - \mathop \int \limits_{{m_{0} }}^{{M_{\max } }} \left[ {\frac{{1 - \exp \left( { - \beta \left( {x - m_{0} } \right)} \right)}}{{1 - \exp \left( { - \beta (M_{\max } - m_{0} } \right))}}} \right]^{n} dx$$

The integral in the right part can be transformed as follows. We take a new variable

$$y = \frac{{1 - \exp \left( { - \beta \left( {x - m_{0 } } \right)} \right)}}{{1 - \exp \left( { - \beta \left( {M_{\max } - m_{0 } } \right)} \right)}}$$

and denote

$$u = 1 \, {-} \, \exp \left( { - \beta \left( {M_{\max } {-} \, m_{0} } \right)} \right)$$

We get

$$M_{\max } = \, m_{0} - \frac{{\log \left( {1 - u} \right)}}{\beta }$$
$$\begin{aligned} G\left( {M_{max} } \right) \, & = M_{max } - \mathop \int \limits_{0}^{1} y^{n} \frac{u}{{\beta \left( {1 - uy} \right)}}dy \, = \, m_{0} - \frac{{{\text{log}}\left( {1 - u} \right)}}{\beta } - \frac{1}{{\beta u^{n} }} \cdot \mathop \int \limits_{0}^{u} \frac{{z^{n} dz}}{1 - z} \\ & = m_{0} - \frac{{{\text{log}}\left( {1 - u} \right)}}{\beta } - \frac{1}{{\beta u^{n} }}\mathop \int \limits_{0}^{u(} \frac{{z^{n} - 1 + 1)dz}}{1 - z} = \, m_{0} - \frac{{{\text{log}}\left( {1 - u} \right)}}{\beta } - \frac{1}{{\beta u^{n} }}\mathop \int \limits_{0}^{u(} \frac{{z^{n} - 1)dz}}{1 - z} - \frac{1}{{\beta u^{n} }}\mathop \int \limits_{0}^{u} \frac{dz}{{1 - z}} \\ \end{aligned}$$
$$\begin{gathered} m_{0} - + \frac{{\log \left( {1 - u} \right)}}{\beta } + \frac{1}{{\beta u^{n} }}\mathop \int \limits_{0}^{u} (1 + z + z^{2} + \ldots + z^{n - 1} )dz + \frac{{\log \left( {1 - u} \right)}}{{\beta u^{n} }} \hfill \\ = m_{0} + \frac{1}{\beta }\left\{ {\left( {\frac{1}{{u^{n} }} - \, 1} \right)\log \left( {1 - u} \right) + \frac{{S_{u} }}{{u^{n} }}} \right\} \hfill \\ \end{gathered}$$

where \(S_{u} = \, u \, + \frac{{u^{2} }}{2} + \ldots + \frac{{u^{n} }}{n}\), \(u \, = \, 1 \, {-} \, \exp \left( { - \beta \left( {M_{\max } {-} \, m_{0} } \right)} \right)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pisarenko, V.F., Rodkin, M.V. Approaches to Solving the Maximum Possible Earthquake Magnitude (Mmax) Problem. Surv Geophys 43, 561–595 (2022). https://doi.org/10.1007/s10712-021-09673-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-021-09673-1

Keywords

Navigation