Skip to main content
Log in

Difficulties of quantitative tests of the Kerr-hypothesis with X-ray observations of mass accreting black holes

  • Editor’s Choice (Invited Review: State of the Field)
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

X-ray studies of stellar mass black holes in X-ray binaries and mass-accreting supermassive black holes in Active Galactic Nuclei have achieved a high degree of maturity and have delivered detailed information about the astrophysical sources and the physics of black hole accretion. In this article, I review recent progress made towards using the X-ray observations for testing the “Kerr hypothesis” that the background spacetimes of all astrophysical quasi-stationary black holes are described by the Kerr metric. Although the observations have indeed revealed clear evidence for relativistic effects in strong-field gravity, quantitative tests of the Kerr hypothesis still struggle with theoretical and practical difficulties. In this article, I describe several recently introduced test metrics and review the status of constraining the background spacetimes of mass accreting stellar mass and supermassive black holes with these test metrics. The main conclusion of the discussion is that astrophysical uncertainties are large compared to the rather small observational differences between the Kerr and non-Kerr metrics precluding quantitative constraints on deviations from the Kerr metric at this point in time. I conclude with discussing future progress enabled by more detailed numerical simulations and by future X-ray spectroscopy, timing, polarimetry, and interferometry missions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(courtesy of JPL/NASA)

Fig. 2

Reproduced from [96] with permission of the authors

Fig. 3

Reproduced from [96] with permission of the author

Fig. 4

From [109]

Fig. 5

Reproduced from [107] with permission of the authors

Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abbott, B.P., et al.: (LIGO Scientific Collaboration), Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016)

  2. Abbott, B.P., et al.: (LIGO Scientific Collaboration), Tests of general relativity with GW150914. Phys. Rev. Lett. 116, 1101 (2016)

  3. Abbott, B.P., et al.: (LIGO Scientific Collaboration), GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 116, 241103 (2016)

  4. Abbott, B.P., et al.: (LIGO Scientific Collaboration), GW170104: Observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Phys. Rev. Lett. 118, 221101 (2017)

  5. Abbott, B.P., et al.: (LIGO Scientific Collaboration), GW170608: Observation of a 19-solar-mass binary black hole coalescence. Astrophys J Lett. 851(2), L35 (2017)

  6. Abbott, B.P., et al.: (LIGO Scientific Collaboration), GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence. Phys. Rev. Lett. 119, 141101 (2017)

  7. Abbott, B.P., et al.: (LIGO Scientific Collaboration), GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017)

  8. Abramowicz, M.A.: QPO as the Rosetta Stone for understanding black hole accretion. Astron. Nachr. 326, 782A (2005)

    ADS  MATH  Google Scholar 

  9. Abramowicz, M.A., Fragile, P.C.: Foundations of black hole accretion disk theory. Living Rev. Relativ. 16, 1 (2013). https://doi.org/10.12942/lrr-2013-1

    ADS  Google Scholar 

  10. Abramowicz, M.A., Kluźniak, W.: A precise determination of black hole spin in GRO J1655–40. Astron. Astrophys. 374L, 19A (2001)

    Google Scholar 

  11. Akiyama, K., Kuramochi, K., Ikeda, S., et al.: Imaging the Schwarzschild-radius-scale structure of M87 with the event horizon telescope using sparse modeling. Astrophys. J. 838, 1 (2017). http://eventhorizontelescope.org

  12. Aliev, A.N., Gümrükçüoǧlu, A.E.: Charged rotating black holes on a 3-brane. Phys. Rev. D 71, 104027 (2005)

    ADS  MathSciNet  Google Scholar 

  13. Ayzenberg, D., Yunes, N.: Black hole continuum spectra as a test of general relativity: quadratic gravity. Class. Quantum Gravity 34, 115003 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Balbus, S.A., Hawley, J.F.: Instability, turbulence, and enhanced transport in accretion disks. Rev. Mod. Phys. 70, 1 (1998)

    ADS  Google Scholar 

  15. Bambi, C.: A code to compute the emission of thin accretion disks in non-Kerr spacetimes and test the nature of black hole candidates. Astrophys. J. 761, 174B (2012)

    ADS  Google Scholar 

  16. Bambi, C.: Testing the space-time geometry around black hole candidates with the analysis of the broad \(\text{ K }\alpha \) iron line. Phys. Rev. D 87, 023007 (2013)

    ADS  Google Scholar 

  17. Bambi, C., Cárdenas-Avendaño, A., Dauser, T., García, J.A.: Testing the Kerr black hole hypothesis using X-ray reflection spectroscopy. Astrophys. J. 842, 76B (2017)

    ADS  Google Scholar 

  18. Bambi, C., Jiang, J., Steiner, J.F.: Testing the no-hair theorem with the continuum-fitting and the iron line methods: a short review. Class. Quantum Gravity 33, 064001 (2016)

    ADS  Google Scholar 

  19. Bardeen, J.M., Petterson, J.A.: The Lense–Thirring effect and accretion disks around Kerr black holes. Astrophys. J. 195, L65–L67 (1975)

    ADS  Google Scholar 

  20. Baumgarte, T.W., Shapiro, S.L.: Numerical Relativity: Solving Einstein’s Equations on the Computer Publisher, 1st edn. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  21. Beheshtipour, B., Krawczynski, H., Malzac, J.: The X-ray polarization of the accretion disk coronae of active galactic nuclei. Astrophys. J. 850, 14B (2017)

    ADS  Google Scholar 

  22. Berti, E., et al.: Testing general relativity with present and future astrophysical observations. Class. Quantum Gravity 32, 243001 (2015)

    ADS  Google Scholar 

  23. Blackburne, J.A., Kochanek, C.S., Chen, B., Dai, X., Chartas, G.: The structure of HE 1104–1805 from infrared to X-ray. Astrophys. J. 798, 95B (2015)

    ADS  Google Scholar 

  24. Blandford, R.D., Znajek, R.L.: Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179, 433 (1977)

    ADS  Google Scholar 

  25. Boller, T., Müller, A.: Observational tests of the pseudo-complex theory of GR using black hole candidates. In: Greiner, W. (ed.) Nuclear Physics: Present and Future. FIAS Interdisciplinary Science Series, pp. 245–253. Springer, Cham (2015)

    Google Scholar 

  26. Boyer, R.H., Lindquist, R.W.: Maximal analytic extension of the Kerr metric. J. Math. Phys. 8, 265 (1967)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Brenneman, L.: Measuring supermassive black hole spins in AGN. Acta Polytech. Suppl. 53, 652 (2013)

    ADS  Google Scholar 

  28. Brenneman, L.W., Reynolds, C.S.: Constraining black hole spin via X-ray spectroscopy. Astrophys. J. 652, 1028B (2006)

    ADS  Google Scholar 

  29. Cardoso, V., Pani, P., Rico, J.: On generic parametrizations of spinning black-hole geometries. Phys. Rev. D. 89, 064007 (2014)

    ADS  Google Scholar 

  30. Carroll, S.: Spacetime and Geometry: An Introduction To General Relativity. Pearson, first edition, Appendix B (2003)

  31. Carter, B.: Global structure of the Kerr family of gravitational fields. Phys. Rev. 174, 1559 (1968)

    ADS  MATH  Google Scholar 

  32. Carter, B.: Hamilton–Jacobi and Schrodinger separable solutions of Einstein’s equations. Commun. Math. Phys. 10, 280 (1968)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Carter, B.: Axisymmetric black hole has only two degrees of freedom. Phys. Rev. Lett. 26, 331 (1971)

    ADS  Google Scholar 

  34. Carter, B.: Black hole equilibrium states. In: DeWitt, C., DeWitt, B.S. (eds.) Les Houches 1972, Black Holes, Les Astres Occlus, 1st edn. Gordon and Breach, New York (1973)

    Google Scholar 

  35. Castor, J.I.: Radiation Hydrodynamics. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  36. Chandrasekhar, S.: The Mathematical Theory of Black Holes. Oxford University Press, New York (1983, Reprint 2010)

  37. Chartas, G., Agol, E., Eracleous, M., Garmire, G., Bautz, M.W., Morgan, N.D.: Caught in the act: Chandra observations of microlensing of the radio-loud Quasar MG J0414+ 0534. Astrophys. J. 568, 509C (2002)

    ADS  Google Scholar 

  38. Chartas, G., Kochanek, C.S., Dai, X., Moore, D., Mosquera, A.M., Blackburne, J.A.: Revealing the structure of an accretion disk through energy-dependent X-ray microlensing. Astrophys. J. 757, 137C (2012)

    ADS  Google Scholar 

  39. Chartas, G., Kochanek, C.S., Dai, X., Poindexter, S., Garmire, G.: X-ray microlensing in RXJ1131-1231 and HE1104-1805. Astrophys. J. 693, 174 (2009)

    ADS  Google Scholar 

  40. Chartas, G., Krawczynski, H., Zalesky, L., Kochanek, C.S., Dai, X., Morgan, C.W., Mosquera, A.: Measuring the innermost stable circular orbits of supermassive black holes. Astrophys. J. 837, 26C (2017)

    ADS  Google Scholar 

  41. Chiang, C.-Y., Walton, D.J., Fabian, A.C., Wilkins, D.R., Gallo, L.C.: Modelling the extreme X-ray spectrum of IRAS 13224–3809. Mon. Not. R. Astron. Soc. 446, 759 (2015)

    ADS  Google Scholar 

  42. Dai, X., Kochanek, C.S., Chartas, G., Kozłowski, S., Morgan, C.W., Garmire, G., Agol, E.: The sizes of the X-ray and optical emission regions of RXJ 1131–1231. Astrophys. J. 709, 278D (2010)

    ADS  Google Scholar 

  43. Dauser, T., Garcia, J., Wilms, J.: Irradiation of an accretion disc by a jet: general properties and implications for spin measurements of black holes. Mon. Not. R. Astron. Soc. 430, 1694–1708 (2013)

    ADS  Google Scholar 

  44. Davis, S.W., Blaes, O.M., Hubeny, I., Turner, N.J.: Relativistic accretion disk models of high-state black hole X-ray binary spectra. Astrophys. J. 621, 372D (2005)

    ADS  Google Scholar 

  45. Davis, S.W., Done, C., Blaes, O.M.: Testing accretion disk theory in black hole X-ray binaries. Astrophys. J. 647, 525 (2006)

    ADS  Google Scholar 

  46. Demianski, M., Ivanov, P.B.: The dynamics of twisted accretion disc around a Kerr black hole. Astron. Astrophys. 324, 829D (1997)

    ADS  Google Scholar 

  47. Dovčiak, M., Karas, V., Matt, G., et al.: Polarization signatures of strong gravity in active galactic nuclei accretion discs. Mon. Not. R. Astron. Soc. 355, 1005D (2004)

    ADS  Google Scholar 

  48. Dovčiak, M., Done, C.: Minimum X-ray source size of the on-axis corona in AGN. Astron. Nachr. 337, 441 (2016)

    ADS  Google Scholar 

  49. Duro, R., Dauser, T., Wilms, J.: The broad iron \(\text{ K }\alpha \) line of Cygnus X-1 as seen by XMM-Newton in the EPIC-pn modified timing mode. Astron. Astrophys. 533, L3 (2011)

    ADS  Google Scholar 

  50. Edelson, R., Gelbord, J.M., Horne, K., et al.: Space telescope and optical reverberation mapping project. II. Swift and HST reverberation mapping of the accretion disk of NGC 5548. Astrophys. J. 806, 129 (2015)

    ADS  Google Scholar 

  51. Elvis, M., Wilkes, B.J., McDowell, J.C., et al.: Atlas of quasar energy distributions. Astrophys. J. Suppl. 95, 1 (1994)

    ADS  Google Scholar 

  52. Fabian, A.C.: The innermost extremes of black hole accretion. Astron. Nachr. 337, 375F (2016)

    ADS  Google Scholar 

  53. Fabian, A.C., Rees, M.J., Stella, L., White, N.E.: X-ray fluorescence from the inner disc in Cygnus X-1. Mon. Not. R. Astron. Soc. 238, 729F (1989)

    ADS  Google Scholar 

  54. Fabian, A.C., Zoghbi, A., Ross, R.R., et al.: Broad line emission from iron K- and L-shell transitions in the active galaxy 1H0707-495. Nature 459, 540 (2009)

    ADS  Google Scholar 

  55. Fabian, A.C., Wilkins, D.R., Miller, J.M.: On the determination of the spin of the black hole in Cyg X-1 from X-ray reflection spectra. Mon. Not. R. Astron. Soc. 424, 217 (2012)

    ADS  Google Scholar 

  56. Fender, R.P., Garrington, S.T., McKay, D.J., et al.: MERLIN observations of relativistic ejections from GRS 1915+ 105. Mon. Not. R. Astron. Soc. 304, 865F (1999)

    ADS  Google Scholar 

  57. Feng, Y., Ramesh, N.: Hot accretion flows around black holes. Annu. Rev. Astron. Astrophys. 52, 529 (2014)

    Google Scholar 

  58. Fock, V.: The Theory of Space, Time and Gravitation. Pergamon Press, New York (1964)

    MATH  Google Scholar 

  59. Fodor, G.: Multipole moments of axisymmetric systems in relativity. J. Math. Phys. 30, 2252 (1989)

    ADS  MathSciNet  MATH  Google Scholar 

  60. Foucart, F., Chandra, M., Gammie, C.F., Quataert, E., Tchekhovskoy, A.: How important is non-ideal physics in simulations of sub-Eddington accretion on to spinning black holes? Mon. Not. R. Astron. Soc. 470, 2240F (2017)

    ADS  Google Scholar 

  61. Fragile, P.C., Blaes, O.M., Anninos, P., Salmonson, J.D.: Global general relativistic magnetohydrodynamic simulation of a tilted black hole accretion disk. Astrophys. J. 668, 417–429 (2007)

    ADS  Google Scholar 

  62. Fragile, P.C., Lindner, C.C., Anninos, P., Salmonson, J.D.: Application of the cubed-sphere grid to tilted black hole accretion disks. Astrophys. J. 691, 482F (2009)

    ADS  Google Scholar 

  63. Fürst, F., Nowak, M.A., Tomsick, J.A., et al.: The complex accretion geometry of GX 339–4 as seen by NuSTAR and SWIFT. Astrophys. J. 808, 122 (2015)

    ADS  Google Scholar 

  64. Gair, J.A., Vallisneri, M., Larson, S.L., Baker, J.G.: Testing general relativity with low-frequency, space-based gravitational-wave detectors. Living Rev. Relativ. 16, 7 (2013). http://www.livingreviews.org/lrr-2013-7

  65. García, J.A., Dauser, T., Lohfink, A.: Improved reflection models of black hole accretion disks: treating the angular distribution of X-rays. Astrophys. J. 782, 76G (2014)

    ADS  Google Scholar 

  66. García, J.A., Dauser, T., Reynolds, C.S., Kallman, T.R., McClintock, J.E., Wilms, J., Eikmann, W.: X-ray reflected spectra from accretion disk models. III. A complete grid of ionized reflection calculations. Astrophys. J. 768, 146 (2013)

    ADS  Google Scholar 

  67. García, J.A., Fabian, A.C., Kallman, T.R., Dauser, T., Parker, M.L., McClintock, J.E., Steiner, J.F., Wilms, J.: The effects of high density on the X-ray spectrum reflected from accretion discs around black holes. Mon. Not. R. Astron. Soc. 462, 751–760 (2016)

    ADS  Google Scholar 

  68. García, J.A., Steiner, J.F., McClintock, J.E., Remillard, R.A.: X-ray reflection spectroscopy of the black hoLE GX 339–4: exploring the hard state with unprecedented sensitivity. Astrophys. J. 813, 84 (2015)

    ADS  Google Scholar 

  69. Geroch, R.: Multipole moments. II. Curved space. J. Math. Phys. (N.Y.) 11, 2580 (1970)

    ADS  MathSciNet  MATH  Google Scholar 

  70. Ghasemi-Nodehi, M., Bambi, C.: Constraining the Kerr parameters via X-ray reflection spectroscopy. Phys. Rev. D 94, 104062 (2016)

    ADS  Google Scholar 

  71. Gierliński, M., Maciołek-Niedźwiecki, A., Ebisawa, K.: Application of a relativistic accretion disc model to X-ray spectra of LMC X-1 and GRO J1655–40. Mon. Not. R. Astron. Soc. 325, 1253G (2001)

    ADS  Google Scholar 

  72. Gilfanov, M., Merloni, A.: Observational appearance of black holes in X-ray binaries and AGN. Space Sci. Rev. 183, 121 (2014)

    ADS  Google Scholar 

  73. Glampedakis, K., Babak, S.: Mapping spacetimes with LISA: inspiral of a test body in a ’quasi-Kerr’ field. Class. Quantum Gravity 23, 4167–4188 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  74. Gonzalez, A.G., Wilkins, D.R., Gallo, L.C.: Probing the geometry and motion of AGN coronae through accretion disc emissivity profiles. Mon. Not. R. Astron. Soc. 472, 1932G (2017)

    ADS  Google Scholar 

  75. Gou, L., McClintock, J.E., Liu, J.: A determination of the spin of the black hole primary in LMC X-1. Astrophys. J. 701, 1076–1090 (2009)

    ADS  Google Scholar 

  76. Gou, L., McClintock, J.E., Reid, M.J., et al.: The extreme spin of the black hole in Cygnus X-1. Astrophys. J. 742, 85G (2011)

    ADS  Google Scholar 

  77. Gou, L., McClintock, J.E., Remillard, R.A.: Confirmation via the continuum-fitting method that the spin of the black hole in Cygnus X-1 is extreme. Astrophys. J. 790, 29 (2014)

    ADS  Google Scholar 

  78. Greene, J., Bailyn, C.D., Orosz, J.A.: Optical and infrared photometry of the microquasar GRO J1655–40 in quiescence. Astrophys. J. 554, 1290G (2001)

    ADS  Google Scholar 

  79. Hall, P., Sarrouh, G., Horne, K.: Non-blackbody disks can help explain inferred AGN accretion disk sizes, submitted to Astrophys. J. (2017). arXiv:1705.05467

  80. Hansen, R.O.: Multipole moments of stationary space-times. J. Math. Phys. (N.Y.) 15, 46 (1974)

    ADS  MathSciNet  MATH  Google Scholar 

  81. Hawking, S.W.: Gravitational radiation from colliding black holes. Phys. Rev. Lett. 26, 1344–1346 (1971)

    ADS  Google Scholar 

  82. Hawking, S.W.: Black holes in general relativity. Commun. Math. Phys. 25, 152–166 (1972)

    ADS  MathSciNet  Google Scholar 

  83. Heusler, M.: Black Hole Uniqueness Theorems. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  84. Chruściel, P.T., Costa, J.L., Heusler, M.: Stationary black holes: uniqueness and beyond. Living Rev. Relativ. 15, 7 (2012). https://link.springer.com/article/10.12942/lrr-2012-7

  85. Hoormann, J.K., Beheshtipour, B., Krawczynski, H.: Testing general relativity’s no-hair theorem with X-ray observations of black holes. Phys. Rev. D. 93, 044020 (2016)

    ADS  Google Scholar 

  86. Ingram, A., Done, C., Fragile, P.C.: Low-frequency quasi-periodic oscillations spectra and Lense–Thirring precession. Mon. Not. R. Astron. Soc. 397, L101–L105 (2009)

    ADS  Google Scholar 

  87. Ingram, A., Maccarone, T.J., Poutanen, J., Krawczynski, H.: Polarization modulation from lense-thirring precession in X-ray binaries. Astrophys. J. 807, 53I (2015)

    ADS  Google Scholar 

  88. Ingram, A., Maccarone, T.J.: An observational method for fast stochastic X-ray polarimetry timing. Mon. Not. R. Astron. Soc. 471, 4206–4217 (2017)

    ADS  Google Scholar 

  89. Israel, W.: Event horizons in static vacuum space-times. Phys. Rev. 164, 1776 (1967)

    ADS  Google Scholar 

  90. Israel, W.: Event horizons in static electrovac space-times. Commun. Math. Phys. 8, 245 (1968)

    ADS  MathSciNet  Google Scholar 

  91. Ivanov, P.B., Illarionov, A.F.: The oscillatory shape of the stationary twisted disc around a Kerr black hole. Mon. Not. R. Astron. Soc. 285, 394–402 (1997)

    ADS  Google Scholar 

  92. Jiang, Y.F., Davis, S.W., Stone, J.M.: Iron opacity bump changes the stability and structure of accretion disks in active galactic nuclei. Astrophys. J. 827, 10 (2016)

    ADS  Google Scholar 

  93. Jiang, Y.-F., et al.: Detection of time lags between quasar continuum emission bands based on Pan-STARRS light curves. Astrophys. J. 836, 186 (2017)

    ADS  Google Scholar 

  94. Johannsen, T., Psaltis, D.: Metric for rapidly spinning black holes suitable for strong-field tests of the no-hair theorem. Phys. Rev. D 83, 124015 (2011)

    ADS  Google Scholar 

  95. Johannsen, T.: Regular black hole metric with three constants of motion. Phys. Rev. D. 88, 044002 (2013)

    ADS  Google Scholar 

  96. Johannsen, T., Psaltis, D.: Testing the no-hair theorem with observations in the electromagnetic spectrum. IV. Relativistically broadened iron lines. Astrophys. J. 773, 57J (2013)

    ADS  Google Scholar 

  97. Johannsen, T.: Systematic study of event horizons and pathologies of parametrically deformed Kerr spacetimes. Phys. Rev. D. 87, 124017 (2013)

    ADS  Google Scholar 

  98. Johannsen, T.: Photon rings around Kerr and Kerr-like black holes. Astrophys. J. 777, 117 (2013)

    Google Scholar 

  99. Johannsen, T.: X-ray probes of black hole accretion disks for testing the no-hair theorem. Phys. Rev. D 90, 064002 (2014)

    ADS  Google Scholar 

  100. Johannsen, T.: Testing the no-hair theorem with observations of black holes in the electromagnetic spectrum. Class. Quantum Gravity 33, 124001 (2016)

    ADS  Google Scholar 

  101. Kerr, R.P.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237 (1963)

    ADS  MathSciNet  MATH  Google Scholar 

  102. Khargharia, J., Froning, C.S., Robinson, E.L.: near-infrared spectroscopy of low-mass X-ray binaries: accretion disk contamination and compact object mass determination in V404 CYG and Cen X-4. Astrophys. J. 716, 1105–1117 (2010)

    ADS  Google Scholar 

  103. Kislat, F., Beheshtipour, B., Dowkontt, P., et al.: Design of the telescope Truss and Gondola for the balloon-borne X-ray polarimeter X-Calibur. J. Astron. Instrum. 6, 1740003 (2017)

    Google Scholar 

  104. Kleihaus, B., Kunz, J., Radu, E.: Rotating black holes in dilatonic Einstein–Gauss–Bonnet theory. Phys. Rev. Lett. 106, 151104 (2011)

    ADS  Google Scholar 

  105. Kolehmainen, M., Done, C.: Limits on spin determination from disc spectral fitting in GX \(339-4\). Mon. Not. R. Astron. Soc. 406, 2206–2212 (2010)

    ADS  Google Scholar 

  106. Kolehmainen, M., Done, C., Díaz Trigo, M.: Modelling the high-mass accretion rate spectra of GX 339–4: black hole spin from reflection? Mon. Not. R. Astron. Soc. 416, 311–321 (2011)

    ADS  Google Scholar 

  107. Kong, L., Li, Z., Bambi, C.: Constraints on the spacetime geometry around 10 stellar-mass black hole candidates from the disk’s thermal spectrum. Astrophys. J. 797, 78 (2014)

    ADS  Google Scholar 

  108. Konoplya, R., Rezzolla, L., Zhidenko, A.: General parametrization of axisymmetric black holes in metric theories of gravity. Phys. Rev. D. 93, 064015 (2016)

    ADS  MathSciNet  Google Scholar 

  109. Krawczynski, H.: Tests of general relativity in the strong-gravity regime based on X-ray spectropolarimetric observations of black holes in X-ray binaries. Astrophys. J. 754, 133 (2012)

    ADS  Google Scholar 

  110. Krawczynski, H., Chartas, G.: Modeling of the microlensed \(\text{ Fe } \text{ K }\alpha \) emission from the Quasar RX J1131–1231. Astrophys. J. Lett. 843, 118K (2017)

    ADS  Google Scholar 

  111. Krawczynski, H., Stern, D., Harrison, F.A., et al.: X-ray polarimetry with the Polarization Spectroscopic Telescope Array (PolSTAR). Astropart. Phys. 75, 8K (2016)

    ADS  Google Scholar 

  112. Kulkarni, A.K., Penna, R.F., Shcherbakov, R.V., et al.: Measuring black hole spin by the continuum-fitting method: effect of deviations from the Novikov–Thorne disc model. Mon. Not. R. Astron. Soc. 414, 1183 (2011)

    ADS  Google Scholar 

  113. Kumar, S., Pringle, J.E.: Twisted accretion disks: the Bardeen–Petterson effect. Mon. Not. R. Astron. Soc. 213, 435–442 (1985)

    ADS  Google Scholar 

  114. Lense, J., Thirring, H.: Über die Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Zeit. Phys. 19, 156–163 (1918)

    MATH  Google Scholar 

  115. Li, L.-X., Narayan, R., McClintock, J.E., et al.: Inferring the inclination of a black hole accretion disk from observations of its polarized continuum radiation. Astrophys. J. Lett. 691, 847L (2009)

    Google Scholar 

  116. LIGOScientific Collaboration and Virgo Collaboration: Fermi Gamma-ray Burst Monitor, and INTEGRAL, Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 848, L13 (2017)

  117. Lubow, S.H., Ogilvie, G.I., Pringle, J.E.: The evolution of a warped disc around a Kerr black hole. Mon. Not. R. Astron. Soc. 337, 706–712 (2002)

    ADS  Google Scholar 

  118. Maccarone, T.J.: On the misalignment of jets in microquasars. Mon. Not. R. Astron. Soc. 336, 1371 (2002), Erratum: On the misalignment of jets in microquasars. Mon. Not. R. Astron. Soc. 446, 3162M (2015)

  119. MacLeod, C.L., Morgan, C.W., Mosquera, A., et al.: A consistent picture emerges: a compact X-ray continuum emission region in the gravitationally lensed quasar SDSS J0924+0219. Astrophys. J. 806, 258M (2015)

    ADS  Google Scholar 

  120. Marin, F., Dovčiak, M., Muleri, F., Kislat, F.F., Krawczynski, H.S.: Predicting the X-ray polarization of type 2 Seyfert galaxies. Mon. Not. R. Astron. Soc. 473, 1286M (2018)

    ADS  Google Scholar 

  121. Marshall, M.D., Avara, M.J., McKinney, J.C.: Angular momentum transport in thin magnetically arrested disks (2017). arXiv:1709.10113

  122. Martin, R.G., Tout, C.A., Pringle, J.E.: Alignment time-scale of the microquasar GRO J1655–40. Mon. Not. R. Astron. Soc. 387, 188 (2008)

    ADS  Google Scholar 

  123. Matt, G., Perola, G.C., Piro, L.: The iron line and high energy bump as X-ray signatures of cold matter in Seyfert 1 galaxies. Astron. Astrophys. 247, 25 (1991)

    ADS  Google Scholar 

  124. Mazur, P.O.: Proof of uniqueness of the Kerr–Newman black hole solution. J. Phys. A Math. Gen. 15, 3173–3180 (1982)

    ADS  MathSciNet  MATH  Google Scholar 

  125. Mazur, P.O.: Black Hole Uniqueness Theorems. (2009) http://adsabs.harvard.edu/abs/2001hep.th....1012M

  126. McClintock, J.E., Narayan, R., Steiner, J.F.: Black hole spin via continuum fitting and the role of spin in powering transient jets. Space Sci. Rev. 183, 295M (2014)

    ADS  Google Scholar 

  127. McClintock, J.E., Shafee, R., Narayan, R., Remillard, R.A., Davis, S.W., Li, L.-X.: The spin of the near-extreme Kerr black hole GRS 1915+105. Astrophys. J. 652, 518–539 (2006)

    ADS  Google Scholar 

  128. Middleton, M., Done, C., Gierliński, M., Davis, S.W.: Black hole spin in GRS 1915+105. Mon. Not. R. Astron. Soc. 373, 1004–1012 (2006)

    ADS  Google Scholar 

  129. Miller, J.M.: Relativistic X-ray lines from the inner accretion disks around black holes. Ann. Rev. Astron. Astrophys. 45, 441–79 (2007)

    ADS  Google Scholar 

  130. Miller, J.M., Pooley, G.G., Fabian, A.C., et al.: On the role of the accretion disk in black hole disk-jet connections. Astrophys. J. 757, 11 (2012)

    ADS  Google Scholar 

  131. Miller, J.M., Parker, M.L., Fürst, F., et al.: NuSTAR spectroscopy OF GRS 1915+105: disk reflection, spin, and connections to jets. Astrophys. J. Lett. 775, L45 (2013)

    ADS  Google Scholar 

  132. Miller, J.M., Reynolds, C.S., Fabian, A.C., Miniutti, G., Gallo, L.C.: Stellar-mass black hole spin constraints from disk reflection and continuum modeling. Astrophys. J. 697, 900M (2009)

    ADS  Google Scholar 

  133. Mishra, B., Fragile, P.C., Johnson, L.C., Kluźniak, W.: Three-dimensional, global, radiative GRMHD simulations of a thermally unstable disc. Mon. Not. R. Astron. Soc. 463, 3437M (2016)

    ADS  Google Scholar 

  134. Morales Teixeira, D., Fragile, P.C., Zhuravlev, V.V., Ivanov, P.B.: Conservative grmhd simulations of moderately thin, tilted accretion disks. Astrophys. J. 796, 103 (2014)

    ADS  Google Scholar 

  135. Morgan, C.W., Kochanek, C.S., Morgan, N.D., Falco, E.E.: The quasar accretion disk size-black hole mass relation. Astrophys. J. 712, 1129 (2010)

    ADS  Google Scholar 

  136. Morgan, C.W., et al.: Further evidence that quasar X-ray emitting regions are compact: X-ray and optical microlensing in the lensed quasar Q J0158–4325. Astrophys. J. 756, 52 (2012)

    ADS  Google Scholar 

  137. Mosquera, A.M.: The structure of the X-ray and optical emitting regions of the lensed quasar Q 2237+0305. Astrophys. J. 769, 53 (2013)

    ADS  Google Scholar 

  138. Nandra, K.: ATHENA: the advanced telescope for high energy astrophysics, The X-ray Universe 2011, Berlin, Germany, 27-30 June 2011 (2011). https://www.cosmos.esa.int/documents/332006/954767/Nandra_TopicK.pdf

  139. Narayan, R., Zhu, Y., Psaltis, D., Sa̧dowski, A.: HEROIC: 3D general relativistic radiative post-processor with comptonization for black hole accretion discs. Mon. Not. R. Astron. Soc. 457, 608 (2016)

    ADS  Google Scholar 

  140. Neustroev, V.V., Veledina, A., Poutanen, J., Zharikov, S.V., Tsygankov, S.S., Sjoberg, G., Kajava, J.J.E.: Spectroscopic evidence for a low-mass black hole in SWIFT J1753.5-0127. Mon. Not. R. Astron. Soc. 445, 2424N (2014)

    ADS  Google Scholar 

  141. Newman, E., Adamo, T.: Kerr-Newman metric. Scholarpedia 9, 31791 (2014). http://www.scholarpedia.org/article/Kerr-Newman_metric

  142. Newman, E.T., Couch, E., Chinnapared, K., Exton, A., Prakash, A., Torrence, R.: Metric of a rotating, Charged mass. J. Math. Phys. 6, 918 (1965)

    ADS  MathSciNet  Google Scholar 

  143. Noble, S.C., et al.: Radiative efficiency and thermal spectrum of accretion onto Schwarzschild black holes. Astrophys. J. 743, 115 (2011)

    ADS  Google Scholar 

  144. Novikov, I.D., Thorne, K.S.: Black hole equilibrium states. In: DeWitt, C., DeWitt, B.S. (eds.) Les Houches 1972, Black Holes, Les Astres Occlus, 1st edn, pp. 343–450. Gordon and Breach, New York (1973)

    Google Scholar 

  145. Orosz, J.A., McClintock, J.E., Remillard, R.A., Corbel, S.: Orbital parameters for the black hole binary XTE J1650–500. Astrophys. J. 616, 376O (2004)

    ADS  Google Scholar 

  146. Orosz, J.A., McClintock, J.E., Aufdenberg, J.P., Remillard, R.A., Reid, M.J., Narayan, R., Gou, L.: The mass of the black hole in Cygnus X-1. Astrophys. J. 742, 84O (2011)

    ADS  Google Scholar 

  147. Page, D.N., Thorne, K.S.: Disk-accretion onto a black hole. Time-averaged structure of accretion disk. Astrophys. J. 191, 499 (1974)

    ADS  Google Scholar 

  148. Pani, P., Macedo, C.F.B., Crispino, L.C.B., Cardoso, V.: Slowly rotating black holes in alternative theories of gravity. Phys. Rev. D 84, 087501 (2011)

    ADS  Google Scholar 

  149. Papaloizou, J.C.B., Lin, D.N.C.: On the dynamics of warped accretion disks. Astrophys. J. 438, 841P (1995)

    ADS  Google Scholar 

  150. Papaloizou, J.C.B., Pringle, J.E.: The time-dependence of non-planar accretion disks. Mon. Not. R. Astron. Soc. 202, 1181–1194 (1983)

    ADS  MATH  Google Scholar 

  151. Parker, M.L., Tomsick, J.A., Kennea, J.A., et al.: NuSTAR and SWIFT observations of the very high state in GX 339-4: weighing the black hole with X-rays. Astrophys. J. Lett. 821, L6 (2016)

    ADS  Google Scholar 

  152. Penna, R.F., Sa̧dowski, A., McKinney, J.C.: Thin-disc theory with a non-zero-torque boundary condition and comparisons with simulations. Mon. Not. R. Astron. Soc. 420, 684–698 (2012)

    ADS  Google Scholar 

  153. Poisson, E., Will, C.M.: Gravity: Newtonian, Post-Newtonian, Relativistic, 1st edn. Cambridge University Press, Cambridge (2014)

    MATH  Google Scholar 

  154. Psaltis, D.: Probes and tests of strong-field gravity with observations in the electromagnetic spectrum. Living Rev. Relativ. 11, 9 (2008). 10.12942/lrr-2008-9

    ADS  MATH  Google Scholar 

  155. Psaltis, D., Johannsen, T.: A ray-tracing algorithm for spinning compact object spacetimes with arbitrary quadrupole moments. I. Quasi-Kerr black holes. Astrophys. J. 745, 6 (2012)

    ADS  Google Scholar 

  156. Remillard, R.A., McClintock, J.E.: X-ray properties of black-hole binaries. Ann. Rev. Astron. Astrophys. 44, 49R (2006)

    ADS  Google Scholar 

  157. Reid, M.J., McClintock, J.E., Narayan, R., Gou, L., Remillard, R.A., Orosz, J.A.: The trigonometric parallax of Cygnus X-1. Astrophys. J. 742, 83R (2011)

    ADS  Google Scholar 

  158. Reid, M.J., McClintock, J.E., Steiner, J.F., Steeghs, D., Remillard, R.A., Dhawan, V., Narayan, R.: A parallax distance to the microquasar GRS 1915+ 105 and a revised estimate of its black hole mass. Astrophys. J. 796, 2 (2014)

    ADS  Google Scholar 

  159. Reis, R.C., Fabian, A.C., Ross, R.R., Miller, J.M.: Determining the spin of two stellar-mass black holes from disc reflection signatures. Mon. Not. R. Astron. Soc. 395, 1257–1264 (2009)

    ADS  Google Scholar 

  160. Reis, R.C., Fabian, A.C., Ross, R.R., Miniutti, G., Miller, J.M., Reynolds, C.: A systematic look at the very high and low/hard state of GX \(339-4\): constraining the black hole spin with a new reflection model. Mon. Not. R. Astron. Soc. 387, 1489–1498 (2008)

    ADS  Google Scholar 

  161. Reis, R.C., Miller, J.M., Reynolds, M.T., Fabian, A.C., Walton, D.J.: Suzaku observation of the black hole candidate maxi J1836–194 in a hard/intermediate spectral state. Astrophys. J. 751, 34R (2012)

    ADS  Google Scholar 

  162. Reis, R.C., Reynolds, M.T., Miller, J.M., Walton, D.J.: Reflection from the strong gravity regime in a z = 0.658 gravitationally lensed-quasar. Nature 507, 207 (2014)

    ADS  Google Scholar 

  163. Reynolds, C.S., Fabian, A.C.: Special relativistic effects on the strength of the fluorescent Kalpha iron line from black hole accretion discs. Mon. Not. R. Astron. Soc. 290L, 1R (1997)

    ADS  Google Scholar 

  164. Risaliti, G., Harrison, F.A., Madsen, K.K., et al.: A rapidly spinning supermassive black hole at the centre of NGC 1365. Nature 494, 449–451 (2013)

    ADS  Google Scholar 

  165. Robinson, D.C.: Uniqueness of the Kerr black hole. Phys. Rev. Lett. 34, 905–906 (1975)

    ADS  Google Scholar 

  166. Robinson, D.C.: Four decades of black hole uniqueness theorems. In: Wiltshire, D.L., Visser, M., Scott, S.M. (eds.) The Kerr Spacetime: Rotating Black Holes in General Relativity, pp. 115–143. Cambridge University Press, Cambridge (2009). https://nms.kcl.ac.uk/david.robinson/web_page/blackholes.pdf

  167. Ross, R.R., Fabian, A.C.: A comprehensive range of X-ray ionized-reflection models. Mon. Not. R. Astron. Soc. 358, 211 (2005)

    ADS  Google Scholar 

  168. Russell, T.D., Soria, R., Motch, C.: The face-on disc of MAXI J1836–194. Mon. Not. R. Astron. Soc. 439, 1381–1389 (2014)

    ADS  Google Scholar 

  169. Ryan, F.D.: Gravitational waves from the inspiral of a compact object into a massive, axisymmetric body with arbitrary multipole moments. Phs. Rev. D 52, 5707R (1995)

    ADS  Google Scholar 

  170. Ryan, B.R., Ressler, S.M., Dolence, J.C., Tchekhovskoy, A., Gammie, C., Quataert, E.: The radiative efficiency and spectra of slowly accreting black holes from two-temperature GRRMHD simulations. Astrophys. J. Lett. 844L, 24R (2017)

    ADS  Google Scholar 

  171. Sa̧dowski, A., Narayan, R.: Three-dimensional simulations of supercritical black hole accretion discs—luminosities, photon trapping and variability. Mon. Not. R. Astron. Soc. 456, 3929 (2016)

    ADS  Google Scholar 

  172. Schnittman, J.D., Homan, J., Miller, J.M.: A precessing ring model for low-frequency quasi-periodic oscillations. Astrophys. J. 642, 420S (2006)

    ADS  Google Scholar 

  173. Schnittman, J.D., Krolik, J.H.: X-ray polarization from accreting black holes: the thermal state. Astrophys. J. 701, 1175S (2009)

    ADS  Google Scholar 

  174. Schnittman, J.D., Krolik, J.H.: X-ray polarization from accreting black holes: coronal emission. Astrophys. J. 712, 908S (2010)

    ADS  Google Scholar 

  175. Schnittman, J.D., Angelini, L., Baring, M., et al.: X-ray polarization from black holes: GEMS scientific white paper (2013). arXiv:1301.1957S

  176. Schnittman, J.D., Krolik, J.H., Noble, S.C.: X-ray spectra from magnetohydrodynamic simulations of accreting black holes. Astrophys. J. 769, 156 (2013)

    ADS  Google Scholar 

  177. Shakura, N.I., Sunyaev, R.A.: Black holes in binary systems: observational appearance. Astron. Astrophys. 24, 337–355 (1973)

    ADS  Google Scholar 

  178. Shafee, R., McClintock, J.E., Narayan, R., Davis, S.W., Li, L.-X., Remillard, R.A.: Estimating the spin of stellar-mass black holes by spectral fitting of the X-ray continuum. Astrophys. J. Lett. 636, L113 (2006)

    ADS  Google Scholar 

  179. Shimura, T., Takahara, F.: On the spectral hardening factor of the X-ray emission from accretion disks in black hole candidates. Astrophys. J. 445, 780–788 (1995)

    ADS  Google Scholar 

  180. Sotiriou, T.P., Limerati, S.: Theory of gravitation theories: a no-progress report. Int. J. Mod. Phys. D 17(3 & 4), 399–423 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  181. Stefanov, I.Z.: Confronting models for the high-frequency QPOs with Lense–Thirring precession. Mon. Not. R. Astron. Soc. 444, 2178S (2014)

    ADS  Google Scholar 

  182. Steiner, J.F., McClintock, J.E.: Modeling the jet kinematics of the black hole microquasar XTE J1550–564: a constraint on spin-orbit alignment. Astrophys. J. 745, 136 (2012)

    ADS  Google Scholar 

  183. Steiner, J.F., McClintock, J.E., Orosz, J.A., Remillard, R.A., Bailyn, C.D., Kolehmainen, M., Straub, O.: The low-spin black hole in LMC X-3. Astrophys. J. Lett. 793, 29 (2014)

    ADS  Google Scholar 

  184. Steiner, J.F., Reis, R.C., Fabian, A.C., et al.: A broad iron line in LMC X-1. Mon. Not. R. Astron. Soc. 427, 2552–2561 (2012)

    ADS  Google Scholar 

  185. Steiner, J.F., Reis, R.C., McClintock, J.E., et al.: The spin of the black hole microquasar XTE J1550–564 via the continuum-fitting and Fe-line methods. Mon. Not. R. Astron. Soc. 416, 941 (2011)

    ADS  Google Scholar 

  186. Stella, L., Vietri, M.: Lense-thirring precession and quasi-periodic oscillations in low-mass X-ray binaries. Astrophys. J. Lett. 492L, 59S (1998)

    ADS  Google Scholar 

  187. Stella, L., Vietri, M., Morsink, S.M.: Correlations in the quasi-periodic oscillation frequencies of low-mass X-ray binaries and the relativistic precession model. Astrophys. J. Lett. 524L, 63S (1999)

    ADS  Google Scholar 

  188. Shakura, N.I., Sunyaev, R.A.: Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973)

    ADS  Google Scholar 

  189. Teukolsky, S.A.: The Kerr metric. Class. Quantum Gravity 32, 124006 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  190. The Black Hole Imager https://bhi.gsfc.nasa.gov

  191. Thornburg, J.: Event and apparent horizon finders for \(3+1\) numerical relativity. Living Rev. Relativ. 10, 3 (2007). http://www.livingreviews.org/lrr-2007-3

  192. Thorne, K.S., Will, C.M.: Theoretical frameworks for testing relativistic gravity. I. Foundations. Astrophys. J. 163, 595T (1971)

    ADS  MathSciNet  Google Scholar 

  193. Thorne, K.S., Price, R.H., MacDonald, D.A.: Black Holes, The Membrane Paradigm. Yale University Press, New Haven and London (1986)

    MATH  Google Scholar 

  194. Tomsick, J.A., Nowak, M.A., Parker, M., et al.: The reflection component from Cygnus X-1 in the soft state measured by NuSTAR AND Suzaku. Astrophys. J. 780, 78 (2014)

    ADS  Google Scholar 

  195. Tomsick, J.A., Parker, M.L., García, J.A., et al.: Alternative explanations for extreme supersolar iron abundances inferred from the energy spectrum of Cygnus X-1. Astrophys. J. 855, 3 (2018)

    ADS  Google Scholar 

  196. Uttley, P., Cackett, E.M., Fabian, A.C., Kara, E., Wilkins, D.R.: X-ray reverberation around accreting black holes. Astron. Astrophys. Rev. 22, 72 (2014)

    ADS  Google Scholar 

  197. Veledina, A., Poutanen, J., Ingram, A.: A unified lense-thirring precession model for optical and X-ray quasi-periodic oscillations in black hole binaries. Astrophys. J. 778, 165V (2013)

    ADS  Google Scholar 

  198. van der Klis, M.: Rapid X-ray variability . In: Lewin, W., van der Klis, M. (eds.) Compact stellar X-ray sources. Cambridge Astrophysics Series, vol. 39, pp. 39–112. Cambridge University Press, Cambridge, UK. ISBN 978-0-521-82659-4, ISBN 0-521-82659-4 (2006). https://doi.org/10.2277/0521826594

  199. Vigeland, S., Yunes, N., Stein, L.C.: Bumpy black holes in alternative theories of gravity. Phys. Rev. 83, 104027 (2011)

    Google Scholar 

  200. Walton, D.J., Reis, R.C., Cackett, E.M., Fabian, A.C., Miller, J.M.: The similarity of broad iron lines in X-ray binaries and active galactic nuclei. Mon. Not. R. Astron. Soc. 422, 2510W (2012)

    ADS  Google Scholar 

  201. Walton, D.J., Tomsick, J.A., Madsen, K.K., et al.: The soft state of Cygnus X-1 observed with NuSTAR: a variable corona and a stable inner disk. Astrophys. J. 826, 87 (2016)

    ADS  Google Scholar 

  202. Walton, D.J., Mooley, K., King, A.L., et al.: Living on a flare: relativistic reflection in V404 Cyg observed by NuSTAR during its summer 2015 outburst. Astrophys. J. 839, 110W (2017)

    ADS  Google Scholar 

  203. Weisskopf, M.C., Ramsey, B., O’Dell, S., et al.: The imaging X-ray polarimetry explorer (IXPE). SPIE 9905E, 17W (2016)

    Google Scholar 

  204. Will, C.: The confrontation between general relativity and experiment. Living Rev. Relativ. 17, 4 (2014). https://doi.org/10.12942/lrr-2014-4

    ADS  MATH  Google Scholar 

  205. Wilms, Jörn, Reynolds, C.S., Begelman, M.C., Reeves, J., Molendi, S., Staubert, R., Kendziorra, E.: XMM-EPIC observation of MCG-6-30-15: direct evidence for the extraction of energy from a spinning black hole? Mon. Not. R. Astron. Soc. 328, 27 (2001)

    ADS  Google Scholar 

  206. Wilkins, D.C.: Bound geodesics in the Kerr metric. Phys. Rev. D. 5, 814 (1974)

    ADS  Google Scholar 

  207. Wilson-Hodge, C.A., Ray, P.S., Gendreau, K.: STROBE-X: X-ray timing and spectroscopy on dynamical timescales from microseconds to years. Res. Phys. 7, 3704W (2017)

    Google Scholar 

  208. Yunes, N., Siemens, S.: Gravitational-wave tests of general relativity with ground-based detectors and pulsar-timing arrays. Living Rev. Relativ. 16, 9 (2013). http://www.livingreviews.org/lrr-2013-9

  209. Zhang, S.-N.: Black hole binaries and microquasars. Front. Phys. 8, 630Z (2013)

    Google Scholar 

  210. Zhang, S.-N., Cui, Wei, Chen, Wan: Black hole spin in X-ray binaries: observational consequences. Astrophys. J. Lett. 482L, 155Z (1997)

    ADS  Google Scholar 

  211. Zhang, S.-N., Feroci, M., Santangelo, A.: eXTP: enhanced X-ray timing and polarimetry mission. Proc. SPIE 9905, 99051Q–1 (2016)

    Google Scholar 

  212. Zhu, Y., Davis, S.W., Narayan, R., et al.: The eye of the storm: light from the inner plunging region of black hole accretion discs. Mon. Not. R. Astron. Soc. 424, 2504 (2012)

    ADS  Google Scholar 

  213. Zhuravlev, V.V., Ivanov, P.B.: A fully relativistic twisted disc around a slowly rotating Kerr black hole: derivation of dynamical equations and the shape of stationary configurations. Mon. Not. R. Astron. Soc. 415, 2122–2144 (2011)

    ADS  Google Scholar 

  214. Zhuravlev, V.V., Ivanov, P.B., Fragile, P.C., Morales Teixeira, D.: No evidence for Bardeen–Petterson alignment in GRMHD simulations and semi-analytic models of moderately thin, prograde, tilted accretion disks. Astrophys. J. 796, 104 (2014)

    ADS  Google Scholar 

Download references

Acknowledgements

I thank Q. Abarr, B. Beheshtipour, P. Bolt, M. Errando, C. Gammie, J. García, B. Groebe, A. Ingram, F. Kislat, and J. Miller for highly enjoyable and helpful discussions. I am grateful to two anonymous referees whose excellent comments have improved the paper substantially. I acknowledge NASA funding through the awards 80NSSC18K0264 and NNX16AC42G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henric Krawczynski.

Additional information

This article belongs to the Topical Collection: Testing the Kerr spacetime with gravitational-wave and electromagnetic observations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krawczynski, H. Difficulties of quantitative tests of the Kerr-hypothesis with X-ray observations of mass accreting black holes. Gen Relativ Gravit 50, 100 (2018). https://doi.org/10.1007/s10714-018-2419-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-018-2419-8

Keywords

Navigation