Skip to main content
Log in

Reconstruction and exact solutions for cosmological perturbations from a generalized gravity theory

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Scalar and tensor cosmological perturbations during an inflationary universe scenario in the context of the a generalized gravity theory are studied. This analyze is carried out considering an ansatz on the variables associated to scalar and tensor perturbation (\(z_s\) and \(z_t\)) in the Jordan frame. In this context, we analyze two different Ansatze for the ratio \(z_s/z_t\), and we study in great detail the analytical and exact solutions for the cosmological perturbations together with the corresponding reconstruction of the background variables. Recent observational data from the Planck 2018 results are employed to constrain the parameters of each of the models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Here the caret means quantity measured in Einstein frame

  2. Indeed, starting from Eqs. (11) and (17) and one finds [69] \(\frac{z_{s,t}^{\prime \prime }}{z_{s,t}}={\mathcal {H}}^{2}\lbrace (1+\delta _{s,t})(2-\epsilon +\delta _{s,t})+\frac{\delta _{s,t}^{\prime }}{{\mathcal {H}}})\rbrace \), where \(\delta _{s,t} =\frac{{\dot{Q}}_{s}}{2{\mathcal {H}} Q}\equiv \delta _{s}\) for scalar perturbations and \(\delta _{s,t}= \frac{{\dot{F}}}{2{\mathcal {H}} F}\equiv \delta _{t}\) for tensor one. In the slow roll approximation, \(\epsilon \) and \(\delta _{s,t}\) are supposed to be constant during inflation stage, hence \(\frac{z_{s,t}^{\prime \prime }}{z_{s,t}}=\frac{\gamma _{s,t}}{\eta ^{2}}\) with the constant \(\gamma _{s,t} =\frac{(1+\delta _{s,t})(2-\epsilon +\delta _{s,t})}{(1-\epsilon )^{2}}\). In contrast, from Eqs. (11), (21) and (22), we have \(Q_{s}\propto F\), hence \(\delta _{s,t}= \frac{q}{{\mathcal {H}}\eta }-1\) and, as usual, \(\epsilon =1-\frac{{\mathcal {H}}^{\prime }}{{\mathcal {H}}^2}\). Thus, we have \(\frac{z_{s,t}^{\prime \prime }}{z_{s,t}}=\frac{q(q-1)}{\eta ^2}\). As we can see, there is no need to assume slow roll approximation.

References

  1. Starobinsky, A.A.: Phys. Lett. B 91, 99 (1980)

    Article  ADS  Google Scholar 

  2. Starobinsky, A.A., Guth, A.: Phys. Rev. D 23, 347 (1981)

    Article  Google Scholar 

  3. Linde, A.D.: Phys. Lett. B 108, 389 (1982)

    Article  ADS  Google Scholar 

  4. Larson, D., et al.: Astrophys. J. Suppl. 192, 16 (2011)

    Article  ADS  Google Scholar 

  5. Bennett, C.L., et al.: Astrophys. J. Suppl. 192, 17 (2011)

    Article  ADS  Google Scholar 

  6. Ade, P.A.R., et al.: Planck Collaboration. Astron. Astrophys. 594, A20 (2016)

    Article  Google Scholar 

  7. Hawking, S.W.: Phys. Lett. B 115, 295 (1982)

    Article  ADS  Google Scholar 

  8. Starobinsky, A.A.: Phys. Lett. B 117, 175 (1982)

    Article  ADS  Google Scholar 

  9. Bardeen, J.M., Steinhardt, P.J., Turner, M.S.: Phys. Rev. D 28, 679 (1983)

    Article  ADS  Google Scholar 

  10. Jordan, P.: Z. Phys. 157, 112 (1959)

    Article  ADS  Google Scholar 

  11. Brans, C., Dicke, R.H.: Phys. Rev. 124, 925 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  12. Bergmann, P.G.: Int. J. Theor. Phys. 1, 25–36 (1968)

    Article  Google Scholar 

  13. Wagoner, R.V.: Phys. Rev. D 1, 3209–3216 (1970)

    Article  ADS  Google Scholar 

  14. Chernikov, N.A., Tagirov, E.A.: Quantum theory of scalar field in de Sitter space. Ann. Inst. H. Poincare A 9, 109171411 (1968)

    MathSciNet  Google Scholar 

  15. Clifton, T., Ferreira, P.G., Padilla, A., Skordis, C.: Phys. Rep. 513, 1 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  16. Zee, A.: Phys. Rev. Lett. 44, 703 (1980)

    Article  ADS  Google Scholar 

  17. Cooper, F., Venturi, G.: Phys. Rev. D 24, 3338 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  18. Wetterich, C.: Nucl. Phys. B 302, 668 (1988)

    Article  ADS  Google Scholar 

  19. Spokoiny, B.L.: Phys. Lett. B 147, 39 (1984)

    Article  ADS  Google Scholar 

  20. Fakir, R., Unruh, W.G.: Astrophys. J 394, 396 (1992)

    Article  ADS  Google Scholar 

  21. Faraoni, V., Gunzig, E., Nardone, P.: Fund. Cosmic Phys. 20, 121 (1999)

    ADS  Google Scholar 

  22. Komatsu, E., Futamase, T.: Phys. Rev. D 59, 064029 (1999)

    Article  ADS  Google Scholar 

  23. Damour, T., Nordtvedt, K.: Phys. Rev. Lett. 70, 2217 (1993)

    Article  ADS  Google Scholar 

  24. Garcia-Bellido, J., Wands, D.: Phys. Rev. D 52, 6739 (1995)

    Article  ADS  Google Scholar 

  25. Martin, J., Ringeval, C., Vennin, V.: Phys. Dark Univ. 5–6, 75–235 (2014)

    Article  Google Scholar 

  26. Jarv, L., Kannike, K., Marzola, L., Racioppi, A., Raidal, M., Runkla, M., Saal, M., Veermae, H.: Phys. Rev. Lett. 118(15), 151302 (2017)

    Article  ADS  Google Scholar 

  27. Kaiser, D.I.: Phys. Rev. D 52, 4295 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  28. Faraoni, V.: Phys. Rev. D 53, 6813 (1996)

    Article  ADS  Google Scholar 

  29. Faraoni, V.: Cosmology in Scalar-Tensor Gravity. Springer Netherlands (2004)

  30. Casas, J.A., Garcia-Bellido, J., Quiros, M.: Class. Quant. Grav. 9, 1371 (1992)

    Article  ADS  Google Scholar 

  31. Green, A.M., Liddle, A.R.: Phys. Rev. D 54, 2557 (1996)

    Article  ADS  Google Scholar 

  32. Chen, X.L., Kamionkowski, M.: Phys. Rev. D 60, 104036 (1999)

    Article  ADS  Google Scholar 

  33. Campuzano, C., del Campo, S., Herrera, R.: JCAP 0606, 017 (2006)

    Article  ADS  Google Scholar 

  34. Carloni, S., Capozziello, S., Leach, J.A., Dunsby, P.K.S.: Class. Quant. Grav. 25, 035008 (2008)

    Article  ADS  Google Scholar 

  35. del Campo, S., Herrera, R., Labrana, P.: JCAP 0907, 006 (2009)

    Article  Google Scholar 

  36. Garcia-Bellido, J., Linde, A.D.: Phys. Rev. D 52, 6730 (1995)

    Article  ADS  Google Scholar 

  37. Garcia-Bellido, J., Wands, D.: Phys. Rev. D 52, 5636 (1995)

    Article  ADS  Google Scholar 

  38. Torres, D.F.: Phys. Lett. A 225, 13 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  39. Tsujikawa, S.: Phys. Rev. D 62, 043512 (2000)

    Article  ADS  Google Scholar 

  40. Starobinsky, A.A., Tsujikawa, S., Yokoyama, J.: Nucl. Phys. B 610, 383 (2001)

    Article  ADS  Google Scholar 

  41. Nagata, R., Chiba, T., Sugiyama, N.: Phys. Rev. D 69, 083512 (2004)

    Article  ADS  Google Scholar 

  42. del Campo, S., Gonzalez, C., Herrera, R.: Astrophys. Space Sci. 358(2), 31 (2015)

    Article  ADS  Google Scholar 

  43. Gonzalez, C., Herrera, R.: Eur. Phys. J. C 77(9), 648 (2017)

    Article  ADS  Google Scholar 

  44. Lukash, V.: Pis’ma. Zh. Eksp. Teor. Fiz. 49, 631 (1980)

    Google Scholar 

  45. Chibisov, G.V., Mukhanov, V.F.: Galaxy formation and phonons. Preprint No. 162 [in English], P. N. Lebedev Physics Institute (1980); Mon. Not. R. Astron. Soc. 200, 535 (1982)

  46. Chibisov, G., Mukhanov, V.: Mon. Not. R. Astron. Soc. 200, 535 (1982)

    Article  ADS  Google Scholar 

  47. Lucchin, F., Matarrese, S.: Phys. Rev. D 32, 1316 (1985)

    Article  ADS  Google Scholar 

  48. Lyth, D.H., Stewart, E.D.: Phys. Lett. B 274, 168 (1992)

    Article  ADS  Google Scholar 

  49. Stewart, E.D., Lyth, D.H.: Phys. Lett. B 302, 171 (1993)

    Article  ADS  Google Scholar 

  50. Mukhanov, V.F., Feldman, H.A., Brandenbarger, R.H.: Phys. Rep. 215, 203 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  51. Easther, R.: Class. Quantum Grav. 13, 1775 (1996)

    Article  ADS  Google Scholar 

  52. Martin, J., Schwarz, D.: Phys. Lett. B 500, 1–7 (2001)

    Article  ADS  Google Scholar 

  53. Herrera, R., Perez, R.G.: Phys. Rev. D 93(6), 063516 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  54. Grivell, I.J., Liddle, A.R.: Phys. Rev. D 54, 7191 (1996)

    Article  ADS  Google Scholar 

  55. Makarov, A.: Phys. Rev. D 72, 083517 (2005)

    Article  ADS  Google Scholar 

  56. Starobinsky, A.A.: JETP Lett. 82, 169 (2005)

    Article  ADS  Google Scholar 

  57. Starobinsky, A.A.: Pisma. Zh. Eksp. Teor. Fiz. 82, 187 (2005)

    Google Scholar 

  58. Boisseau, B., Esposito-Farese, G., Polarski, D., Starobinsky, A.A.: Phys. Rev. Lett. 85, 2236 (2000)

    Article  ADS  Google Scholar 

  59. Gong, J.O., Stewart, E.D.: Phys. Lett. B 510, 1 (2001)

    ADS  Google Scholar 

  60. Stewart, E.D.: Phys. Rev. D 65, 103508 (2002)

    Article  ADS  Google Scholar 

  61. Choe, J., Gong, J.O., Stewart, E.D.: JCAP 0407, 012 (2004)

    Article  ADS  Google Scholar 

  62. Wei, H., Cai, R.G., Wang, A.: Phys. Lett. B 603, 95 (2004)

    Article  ADS  Google Scholar 

  63. Akrami, Y., et al. [Planck Collaboration]: arXiv:1807.06211 [astro-ph.CO]

  64. Bergmann, P.G.: Int. J. Theor. Phys 1, 25 (1968)

    Article  Google Scholar 

  65. Nordtvedt, K.: Astrophys. J 161, 1059 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  66. Wagoner, R.: Phys. Rev. D 1, 3209 (1970)

    Article  ADS  Google Scholar 

  67. Bardeen, J.: Phys. Rev. D 22, 1882 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  68. Noh, H., Hwang, J.: Phys. Lett. B 515, 231–237 (2001)

    Article  ADS  Google Scholar 

  69. Tsujikawa, S., Gumjudpai, B.: Phys. Rev. D 69, 123523 (2004)

    Article  ADS  Google Scholar 

  70. Ade, P.A.R., et al., BICEP2 and Keck Array Collaborations: Phys. Rev. Lett. 116, 031302 (2016)

  71. Kaiser, D.: Phys. Rev. D 81, 084044 (2010)

    Article  ADS  Google Scholar 

  72. Spokoiny, B.L.: Phys. Lett. B 147, 39 (1984)

    Article  ADS  Google Scholar 

  73. Accetta, F.S., Zoller, D.J., Turner, M.S.: Phys. Rev. D 31, 3046 (1985)

    Article  ADS  Google Scholar 

  74. Fakir, R., Unruh, W.G.: Phys. Rev. D 41, 1792 (1990)

    Article  ADS  Google Scholar 

  75. Kaiser, D.I.: Phys. Rev. D 49, 6347 (1994)

    Article  ADS  Google Scholar 

  76. Cervantes-Cota, J.L., Dehnen, H.: Phys. Rev. D 51, 395 (1995)

    Article  ADS  Google Scholar 

  77. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. Dover, New York (1972)

    MATH  Google Scholar 

  78. Tsujikawa, S.: Introductory review of cosmic inflation. arXiv:hep-ph/0304257

  79. Hwang, J.C., Noh, H.: Phys. Rev. D 71, 063536 (2005)

    Article  ADS  Google Scholar 

  80. Tahmasebzadeh, B., Rezazadeh, K., Karami, K.: JCAP 1607, 006 (2016)

    Article  ADS  Google Scholar 

  81. Garcia-Bellido, J., Wands, D.: Phys. Rev. D 52, 6739 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J.A.B. was supported by COMISION NACIONAL DE CIENCIAS Y TECNOLOGIA through FONDECYT Grant N\(_0\) 11170083. C.G. was supported by Proyecto DIUDA REGULAR N\(_{0}\) 22347. R.H. was supported by Proyecto VRIEA-PUCV N\(_{0}\) 039.309/2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos González.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belinchón, J.A., González, C. & Herrera, R. Reconstruction and exact solutions for cosmological perturbations from a generalized gravity theory. Gen Relativ Gravit 52, 35 (2020). https://doi.org/10.1007/s10714-020-02685-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-020-02685-z

Keywords

Navigation