Skip to main content

Advertisement

Log in

Diabetic kidney disease: a role for advanced glycation end-product receptor 1 (AGE-R1)?

  • Mini-Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Diabetic patients are postulated to be in a perpetual state of oxidative stress and inflammation at sites where chronic complications occur. The accumulation of AGEs derived from both endogenous and exogenous sources (such as the diet) have been implicated in the development and progression of diabetic complications, particularly nephropathy. There has been some interest in investigating the potential for reducing the AGE burden in chronic disease, through the action of AGE “clearance” receptors, such as the advanced glycation end-product receptor 1 (AGE-R1). Reducing the burden of AGEs has been linked to attenuation of inflammation, slower progression of diabetic complications (in particular vascular and renal complications) and has been shown to extend lifespan. To date, however, there have been no direct investigations into whether AGE-R1 has any role in modulating normal kidney function, or specifically during the development and progression of diabetes. This mini-review will focus on the recent advances in knowledge around the mechanistic function of AGE-R1 and the implications of this for the pathogenesis of diabetic kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Shaw J.E., Sicree R.A., Zimmet P.Z.: Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 87(1), 4–14 (2010). doi:10.1016/j.diabres.2009.10.007

    Article  CAS  PubMed  Google Scholar 

  2. Danaei G., Finucane M.M., Lu Y., Singh G.M., Cowan M.J., Paciorek C.J., Lin J.K., Farzadfar F., Khang Y.H., Stevens G.A., Rao M., Ali M.K., Riley L.M., Robinson C.A., Ezzati M.: National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet (London, England). 378(9785), 31–40 (2011). doi:10.1016/s0140-6736(11)60679-x

    Article  CAS  Google Scholar 

  3. Gerstein H.C., Pogue J., Mann J.F., Lonn E., Dagenais G.R., McQueen M., Yusuf S.: The relationship between dysglycaemia and cardiovascular and renal risk in diabetic and non-diabetic participants in the HOPE study: a prospective epidemiological analysis. Diabetologia. 48(9), 1749–1755 (2005). doi:10.1007/s00125-005-1858-4

    Article  CAS  PubMed  Google Scholar 

  4. Fox C.S., Coady S., Sorlie P.D., D'Agostino Sr. R.B., Pencina M.J., Vasan R.S., Meigs J.B., Levy D., Savage P.J.: Increasing cardiovascular disease burden due to diabetes mellitus: the Framingham heart study. Circulation. 115(12), 1544–1550 (2007). doi:10.1161/circulationaha.106.658948

    Article  PubMed  Google Scholar 

  5. Matsushita K., van der Velde M., Astor B.C., Woodward M., Levey A.S., de Jong P.E., Coresh J., Gansevoort R.T.: Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet (London, England). 375(9731), 2073–2081 (2010). doi:10.1016/s0140-6736(10)60674-5

    Article  Google Scholar 

  6. Alsaad K.O., Herzenberg A.M.: Distinguishing diabetic nephropathy from other causes of glomerulosclerosis: an update. J. Clin. Pathol. 60(1), 18–26 (2007). doi:10.1136/jcp.2005.035592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kshirsagar A.V., Joy M.S., Hogan S.L., Falk R.J., Colindres R.E.: Effect of ACE inhibitors in diabetic and nondiabetic chronic renal disease: a systematic overview of randomized placebo-controlled trials. Am. J. Kidney Dis.: the official journal of the National Kidney Foundation. 35(4), 695–707 (2000)

    Article  CAS  Google Scholar 

  8. Zoungas S., de Galan B.E., Ninomiya T., Grobbee D., Hamet P., Heller S., MacMahon S., Marre M., Neal B., Patel A., Woodward M., Chalmers J., Cass A., Glasziou P., Harrap S., Lisheng L., Mancia G., Pillai A., Poulter N., Perkovic V., Travert F.: Combined effects of routine blood pressure lowering and intensive glucose control on macrovascular and microvascular outcomes in patients with type 2 diabetes: New results from the ADVANCE trial. Diabetes Care. 32(11), 2068–2074 (2009). doi:10.2337/dc09-0959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Holman R.R., Paul S.K., Bethel M.A., Matthews D.R., Neil H.A.: 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 359(15), 1577–1589 (2008). doi:10.1056/NEJMoa0806470

    Article  CAS  PubMed  Google Scholar 

  10. Holman R.R., Paul S.K., Bethel M.A., Neil H.A., Matthews D.R.: Long-term follow-up after tight control of blood pressure in type 2 diabetes. N. Engl. J. Med. 359(15), 1565–1576 (2008). doi:10.1056/NEJMoa0806359

    Article  CAS  PubMed  Google Scholar 

  11. Brenner B.M., Cooper M.E., de Zeeuw D., Keane W.F., Mitch W.E., Parving H.H., Remuzzi G., Snapinn S.M., Zhang Z., Shahinfar S.: Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345(12), 861–869 (2001). doi:10.1056/NEJMoa011161

    Article  CAS  PubMed  Google Scholar 

  12. Parving H.H., Persson F., Lewis J.B., Lewis E.J., Hollenberg N.K.: Aliskiren combined with losartan in type 2 diabetes and nephropathy. N. Engl. J. Med. 358(23), 2433–2446 (2008). doi:10.1056/NEJMoa0708379

    Article  CAS  PubMed  Google Scholar 

  13. Roos J.F., Doust J., Tett S.E., Kirkpatrick C.M.: Diagnostic accuracy of cystatin C compared to serum creatinine for the estimation of renal dysfunction in adults and children–a meta-analysis. Clin. Biochem. 40(5–6), 383–391 (2007). doi:10.1016/j.clinbiochem.2006.10.026

    Article  CAS  PubMed  Google Scholar 

  14. Mathew T.H.: Chronic kidney disease and automatic reporting of estimated glomerular filtration rate: a position statement. Med. J. Aust. 183(3), 138–141 (2005)

    PubMed  Google Scholar 

  15. Cooper B.A., Branley P., Bulfone L., Collins J.F., Craig J.C., Dempster J., Fraenkel M.B., Harris A., Harris D.C., Johnson D.W., Kesselhut J., Luxton G., Pilmore A., Pollock C.A., Tiller D.J.: The initiating dialysis early and late (IDEAL) study: study rationale and design. Perit. Dial. Int.: journal of the International Society for Peritoneal Dialysis. 24(2), 176–181 (2004)

    Google Scholar 

  16. Cooper B.A., Branley P., Bulfone L., Collins J.F., Craig J.C., Fraenkel M.B., Harris A., Johnson D.W., Kesselhut J., Li J.J., Luxton G., Pilmore A., Tiller D.J., Harris D.C., Pollock C.A.: A randomized, controlled trial of early versus late initiation of dialysis. N. Engl. J. Med. 363(7), 609–619 (2010). doi:10.1056/NEJMoa1000552

    Article  CAS  PubMed  Google Scholar 

  17. Tessari P., Garibotto G., Inchiostro S., Robaudo C., Saffioti S., Vettore M., Zanetti M., Russo R., Deferrari G.: Kidney, splanchnic, and leg protein turnover in humans. Insight from leucine and phenylalanine kinetics. J. Clin. Invest. 98(6), 1481–1492 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goldspink D.F., Kelly F.J.: Protein turnover and growth in the whole body, liver and kidney of the rat from the foetus to senility. Biochem. J. 217(2), 507–516 (1984)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Forbes J.M., Cooper M.E.: Mechanisms of diabetic complications. Physiol. Rev. 93(1), 137–188 (2013). doi:10.1152/physrev.00045.2011

    Article  CAS  PubMed  Google Scholar 

  20. Dalla Vestra M., Masiero A., Roiter A.M., Saller A., Crepaldi G., Fioretto P.: Is podocyte injury relevant in diabetic nephropathy? Studies in patients with type 2 diabetes. Diabetes. 52(4), 1031–1035 (2003)

    Article  CAS  PubMed  Google Scholar 

  21. Steffes M.W., Schmidt D., McCrery R., Basgen J.M.: Glomerular cell number in normal subjects and in type 1 diabetic patients. Kidney Int. 59(6), 2104–2113 (2001). doi:10.1046/j.1523-1755.2001.00725.x

    Article  CAS  PubMed  Google Scholar 

  22. Puelles V.G., Cullen-McEwen L.A., Taylor G.E., Li J., Hughson M.D., Kerr P.G., Hoy W.E.A.F., Bertram J.F.: Human podocyte depletion in association with older age and hypertension. Am. J. Physiol. Renal Physiol. (2016). doi:10.1152/ajprenal.00497.2015

    PubMed  Google Scholar 

  23. Welsh G.I., Hale L.J., Eremina V., Jeansson M., Maezawa Y., Lennon R., Pons D.A., Owen R.J., Satchell S.C., Miles M.J., Caunt C.J., McArdle C.A., Pavenstadt H., Tavare J.M., Herzenberg A.M., Kahn C.R., Mathieson P.W., Quaggin S.E., Saleem M.A., Coward R.J.: Insulin signaling to the glomerular podocyte is critical for normal kidney function. Cell Metab. 12(4), 329–340 (2010). doi:10.1016/j.cmet.2010.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Herman-Edelstein M., Scherzer P., Tobar A., Levi M., Gafter U.: Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. J. Lipid Res. 55(3), 561–572 (2014). doi:10.1194/jlr.P040501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Merscher-Gomez S., Guzman J., Pedigo C.E., Lehto M., Aguillon-Prada R., Mendez A., Lassenius M.I., Forsblom C., Yoo T., Villarreal R., Maiguel D., Johnson K., Goldberg R., Nair V., Randolph A., Kretzler M., Nelson R.G., Burke 3rd G.W., Groop P.H., Fornoni A.: Cyclodextrin protects podocytes in diabetic kidney disease. Diabetes. 62(11), 3817–3827 (2013). doi:10.2337/db13-0399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Thameem F., Puppala S., Schneider J., Bhandari B., Arya R., Arar N.H., Vasylyeva T.L., Farook V.S., Fowler S., Almasy L., Blangero J., Duggirala R., Abboud H.E.: The Gly(972)Arg variant of human IRS1 gene is associated with variation in glomerular filtration rate likely through impaired insulin receptor signaling. Diabetes. 61(9), 2385–2393 (2012). doi:10.2337/db11-1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Suzuki M., Isobe K., Fujii E., Yamazaki M., Takai Y., Soshin T., Akai S., Watanabe T., Kato A.: Cell proliferative activity in the kidney of young growing rat analyzed using flash and cumulative labeling with bromodeoxyuridine. J. Toxicol. Sci. 35(5), 631–637 (2010)

    Article  PubMed  Google Scholar 

  28. Ichikawa I., Ma J., Motojima M., Matsusaka T.: Podocyte damage damages podocytes: autonomous vicious cycle that drives local spread of glomerular sclerosis. Curr. Opin. Nephrol. Hypertens. 14(3), 205–210 (2005)

    Article  PubMed  Google Scholar 

  29. Hara M., Yanagihara T., Kihara I.: Urinary podocytes in primary focal segmental glomerulosclerosis. Nephron. 89(3), 342–347 (2001)

    Article  CAS  PubMed  Google Scholar 

  30. Kriz W., LeHir M.: Pathways to nephron loss starting from glomerular diseases-insights from animal models. Kidney Int. 67(2), 404–419 (2005). doi:10.1111/j.1523-1755.2005.67097.x

    Article  PubMed  Google Scholar 

  31. Koschinsky T., He C.J., Mitsuhashi T., Bucala R., Liu C., Buenting C., Heitmann K., Vlassara H.: Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc. Natl. Acad. Sci. U. S. A. 94(12), 6474–6479 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. He C., Sabol J., Mitsuhashi T., Vlassara H.: Dietary glycotoxins: inhibition of reactive products by aminoguanidine facilitates renal clearance and reduces tissue sequestration. Diabetes. 48(6), 1308–1315 (1999)

    Article  CAS  PubMed  Google Scholar 

  33. Fu M.X., Wells-Knecht K.J., Blackledge J.A., Lyons T.J., Thorpe S.R., Baynes J.W.: Glycation, glycoxidation, and cross-linking of collagen by glucose. Kinetics, mechanisms, and inhibition of late stages of the Maillard reaction. Diabetes. 43(5), 676–683 (1994)

    Article  CAS  PubMed  Google Scholar 

  34. Goldberg T., Cai W., Peppa M., Dardaine V., Baliga B.S., Uribarri J., Vlassara H.: Advanced glycoxidation end products in commonly consumed foods. J. Am. Diet. Assoc. 104(8), 1287–1291 (2004). doi:10.1016/j.jada.2004.05.214

    Article  CAS  PubMed  Google Scholar 

  35. Krishnamurti U., Rondeau E., Sraer J.D., Michael A.F., Tsilibary E.C.: Alterations in human glomerular epithelial cells interacting with nonenzymatically glycosylated matrix. J. Biol. Chem. 272(44), 27966–27970 (1997)

    Article  CAS  PubMed  Google Scholar 

  36. Charonis A.S., Reger L.A., Dege J.E., Kouzi-Koliakos K., Furcht L.T., Wohlhueter R.M., Tsilibary E.C.: Laminin alterations after in vitro nonenzymatic glycosylation. Diabetes. 39(7), 807–814 (1990)

    Article  CAS  PubMed  Google Scholar 

  37. Genuth S., Sun W., Cleary P., Sell D.R., Dahms W., Malone J., Sivitz W., Monnier V.M.: Glycation and carboxymethyllysine levels in skin collagen predict the risk of future 10-year progression of diabetic retinopathy and nephropathy in the diabetes control and complications trial and epidemiology of diabetes interventions and complications participants with type 1 diabetes. Diabetes. 54(11), 3103–3111 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McIntyre N.J., Fluck R.J., McIntyre C.W., Taal M.W.: Skin autofluorescence and the association with renal and cardiovascular risk factors in chronic kidney disease stage 3. Clin. J. Am. Soc. Nephrol.: CJASN. 6(10), 2356–2363 (2011). doi:10.2215/cjn.02420311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yubero-Serrano E.M., Woodward M., Poretsky L., Vlassara H., Striker G.E.: Effects of sevelamer carbonate on advanced glycation end products and antioxidant/pro-oxidant status in patients with diabetic kidney disease. Clin. J. Am. Soc. Nephrol.: CJASN. 10(5), 759–766 (2015). doi:10.2215/cjn.07750814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lewis E.J., Greene T., Spitalewiz S., Blumenthal S., Berl T., Hunsicker L.G., Pohl M.A., Rohde R.D., Raz I., Yerushalmy Y., Yagil Y., Herskovits T., Atkins R.C., Reutens A.T., Packham D.K., Lewis J.B.: Pyridorin in type 2 diabetic nephropathy. J. Am. Soc. Nephrol.: JASN. 23(1), 131–136 (2012). doi:10.1681/asn.2011030272

    Article  CAS  PubMed  Google Scholar 

  41. Williams M.E., Bolton W.K., Khalifah R.G., Degenhardt T.P., Schotzinger R.J., McGill J.B.: Effects of pyridoxamine in combined phase 2 studies of patients with type 1 and type 2 diabetes and overt nephropathy. Am. J. Nephrol. 27(6), 605–614 (2007). doi:10.1159/000108104

    Article  CAS  PubMed  Google Scholar 

  42. Silberstein S., Kelleher D.J., Gilmore R.: The 48-kDa subunit of the mammalian oligosaccharyltransferase complex is homologous to the essential yeast protein WBP1. J. Biol. Chem. 267(33), 23658–23663 (1992)

    CAS  PubMed  Google Scholar 

  43. Li Y.M., Mitsuhashi T., Wojciechowicz D., Shimizu N., Li J., Stitt A., He C., Banerjee D., Vlassara H.: Molecular identity and cellular distribution of advanced glycation endproduct receptors: relationship of p60 to OST-48 and p90 to 80 K-H membrane proteins. Proc. Natl. Acad. Sci. U. S. A. 93(20), 11047–11052 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yan K., Khoshnoodi J., Ruotsalainen V., Tryggvason K.: N-linked glycosylation is critical for the plasma membrane localization of nephrin. J. Am. Soc. Nephrol.: JASN. 13(5), 1385–1389 (2002)

    Article  CAS  PubMed  Google Scholar 

  45. Kestila M., Lenkkeri U., Mannikko M., Lamerdin J., McCready P., Putaala H., Ruotsalainen V., Morita T., Nissinen M., Herva R., Kashtan C.E., Peltonen L., Holmberg C., Olsen A., Tryggvason K.: Positionally cloned gene for a novel glomerular protein–nephrin–is mutated in congenital nephrotic syndrome. Mol. Cell. 1(4), 575–582 (1998)

    Article  CAS  PubMed  Google Scholar 

  46. Fujii Y., Khoshnoodi J., Takenaka H., Hosoyamada M., Nakajo A., Bessho F., Kudo A., Takahashi S., Arimura Y., Yamada A., Nagasawa T., Ruotsalainen V., Tryggvason K., Lee A.S., Yan K.: The effect of dexamethasone on defective nephrin transport caused by ER stress: a potential mechanism for the therapeutic action of glucocorticoids in the acquired glomerular diseases. Kidney Int. 69(8), 1350–1359 (2006). doi:10.1038/sj.ki.5000317

    Article  CAS  PubMed  Google Scholar 

  47. Vlassara H., Brownlee M., Cerami A.: Novel macrophage receptor for glucose-modified proteins is distinct from previously described scavenger receptors. J. Exp. Med. 164(4), 1301–1309 (1986)

    Article  CAS  PubMed  Google Scholar 

  48. Lu C., He J.C., Cai W., Liu H., Zhu L., Vlassara H.: Advanced glycation endproduct (AGE) receptor 1 is a negative regulator of the inflammatory response to AGE in mesangial cells. Proc. Natl. Acad. Sci. U. S. A. 101(32), 11767–11772 (2004). doi:10.1073/pnas.0401588101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. He C.J., Koschinsky T., Buenting C., Vlassara H.: Presence of diabetic complications in type 1 diabetic patients correlates with low expression of mononuclear cell AGE-receptor-1 and elevated serum AGE. Mol. Med. (Cambridge, Mass.) 7(3), 159–168 (2001)

    CAS  PubMed Central  Google Scholar 

  50. Coughlan M.T., Thallas-Bonke V., Pete J., Long D.M., Gasser A., Tong D.C., Arnstein M., Thorpe S.R., Cooper M.E., Forbes J.M.: Combination therapy with the advanced glycation end product cross-link breaker, alagebrium, and angiotensin converting enzyme inhibitors in diabetes: synergy or redundancy? Endocrinology. 148(2), 886–895 (2007). doi:10.1210/en.2006-1300

    Article  CAS  PubMed  Google Scholar 

  51. Cai W., He J.C., Zhu L., Lu C., Vlassara H.: Advanced glycation end product (AGE) receptor 1 suppresses cell oxidant stress and activation signaling via EGF receptor. Proc. Natl. Acad. Sci. U. S. A. 103(37), 13801–13806 (2006). doi:10.1073/pnas.0600362103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. He C.J., Zheng F., Stitt A., Striker L., Hattori M., Vlassara H.: Differential expression of renal AGE-receptor genes in NOD mice: possible role in nonobese diabetic renal disease. Kidney Int. 58(5), 1931–1940 (2000). doi:10.1111/j.1523-1755.2000.00365.x

    Article  CAS  PubMed  Google Scholar 

  53. Vlassara H., Cai W., Goodman S., Pyzik R., Yong A., Chen X., Zhu L., Neade T., Beeri M., Silverman J.M., Ferrucci L., Tansman L., Striker G.E., Uribarri J.: Protection against loss of innate defenses in adulthood by low advanced glycation end products (AGE) intake: role of the antiinflammatory AGE receptor-1. J. Clin. Endocrinol. Metab. 94(11), 4483–4491 (2009). doi:10.1210/jc.2009-0089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sourris K.C., Harcourt B.E., Penfold S.A., Yap F.Y., Morley A.L., Morgan P.E., Davies M.J., Baker S.T., Jerums G., Forbes J.M.: Modulation of the cellular expression of circulating advanced glycation end-product receptors in type 2 diabetic nephropathy. Exp. Diabetes Res. 2010, 974681 (2010). doi:10.1155/2010/974681

    Article  PubMed  Google Scholar 

  55. Hoverfelt A., Sallinen R., Soderlund J.M., Forsblom C., Pettersson-Fernholm K., Parkkonen M., Groop P.H., Wessman M.: DDOST, PRKCSH and LGALS3, which encode AGE-receptors 1, 2 and 3, respectively, are not associated with diabetic nephropathy in type 1 diabetes. Diabetologia. 53(9), 1903–1907 (2010). doi:10.1007/s00125-010-1771-3

    Article  CAS  PubMed  Google Scholar 

  56. Lerouxel O., Mouille G., Andeme-Onzighi C., Bruyant M.P., Seveno M., Loutelier-Bourhis C., Driouich A., Hofte H., Lerouge P.: Mutants in DEFECTIVE GLYCOSYLATION, an Arabidopsis homolog of an oligosaccharyltransferase complex subunit, show protein underglycosylation and defects in cell differentiation and growth. Plant J.: for cell and molecular biology. 42(4), 455–468 (2005). doi:10.1111/j.1365-313X.2005.02392.x

    Article  CAS  Google Scholar 

  57. Jones M.A., Ng B.G., Bhide S., Chin E., Rhodenizer D., He P., Losfeld M.E., He M., Raymond K., Berry G., H.H. F., M.R. H.: DDOST mutations identified by whole-exome sequencing are implicated in congenital disorders of glycosylation. Am. J. Hum. Genet. 90(2), 363–368 (2012). doi:10.1016/j.ajhg.2011.12.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dupre T., Vuillaumier-Barrot S., Chantret I., Sadou Yaye H., Le Bizec C., Afenjar A., Altuzarra C., Barnerias C., Burglen L., de Lonlay P., Feillet F., Napuri S., Seta N., Moore S.E.: Guanosine diphosphate-mannose:GlcNAc2-PP-dolichol mannosyltransferase deficiency (congenital disorders of glycosylation type Ik): five new patients and seven novel mutations. J. Med. Genet. 47(11), 729–735 (2010). doi:10.1136/jmg.2009.072504

    Article  CAS  PubMed  Google Scholar 

  59. Cai W., He J.C., Zhu L., Chen X., Striker G.E., Vlassara H.: AGE-receptor-1 counteracts cellular oxidant stress induced by AGEs via negative regulation of p66shc-dependent FKHRL1 phosphorylation. Am. J.Physiol. Cell Physiol. 294(1), C145–C152 (2008). doi:10.1152/ajpcell.00350.2007

    Article  CAS  PubMed  Google Scholar 

  60. Cai W., Torreggiani M., Zhu L., Chen X., He J.C., Striker G.E., Vlassara H.: AGER1 regulates endothelial cell NADPH oxidase-dependent oxidant stress via PKC-delta: implications for vascular disease. Am. J. Physiol. Cell Physiol. 298(3), C624–C634 (2010). doi:10.1152/ajpcell.00463.2009

    Article  CAS  PubMed  Google Scholar 

  61. Wautier M.P., Chappey O., Corda S., Stern D.M., Schmidt A.M., Wautier J.L.: Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am. J. Physiol. Endocrinol. Metab. 280(5), E685–E694 (2001)

    CAS  PubMed  Google Scholar 

  62. Napoli C., Martin-Padura I., de Nigris F., Giorgio M., Mansueto G., Somma P., Condorelli M., Sica G., De Rosa G., Pelicci P.: Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet. Proc. Natl. Acad. Sci. U. S. A. 100(4), 2112–2116 (2003). doi:10.1073/pnas.0336359100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stitt A.W., Li Y.M., Gardiner T.A., Bucala R., Archer D.B., Vlassara H.: Advanced glycation end products (AGEs) co-localize with AGE receptors in the retinal vasculature of diabetic and of AGE-infused rats. Am. J. Pathol. 150(2), 523–531 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Torreggiani M., Liu H., Wu J., Zheng F., Cai W., Striker G., Vlassara H.: Advanced glycation end product receptor-1 transgenic mice are resistant to inflammation, oxidative stress, and post-injury intimal hyperplasia. Am. J. Pathol. 175(4), 1722–1732 (2009). doi:10.2353/ajpath.2009.090138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liang F., Kume S., Koya D.: SIRT1 and insulin resistance. Nat. Rev. Endocrinol. 5(7), 367–373 (2009). doi:10.1038/nrendo.2009.101

    Article  CAS  PubMed  Google Scholar 

  66. de Kreutzenberg S.V., Ceolotto G., Papparella I., Bortoluzzi A., Semplicini A., Dalla Man C., Cobelli C., Fadini G.P., Avogaro A.: Downregulation of the longevity-associated protein sirtuin 1 in insulin resistance and metabolic syndrome: potential biochemical mechanisms. Diabetes. 59(4), 1006–1015 (2010). doi:10.2337/db09-1187

    Article  PubMed  PubMed Central  Google Scholar 

  67. Menghini R., Casagrande V., Cardellini M., Martelli E., Terrinoni A., Amati F., Vasa-Nicotera M., Ippoliti A., Novelli G., Melino G., Lauro R., Federici M.: MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation. 120(15), 1524–1532 (2009). doi:10.1161/circulationaha.109.864629

    Article  CAS  PubMed  Google Scholar 

  68. Vlassara H., Striker G.E.: AGE restriction in diabetes mellitus: a paradigm shift. Nature reviews. Endocrinology. 7(9), 526–539 (2011). doi:10.1038/nrendo.2011.74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hasegawa K., Wakino S., Simic P., Sakamaki Y., Minakuchi H., Fujimura K., Hosoya K., Komatsu M., Kaneko Y., Kanda T., Kubota E., Tokuyama H., Hayashi K., Guarente L., Itoh H.: Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat. Med. 19(11), 1496–1504 (2013). doi:10.1038/nm.3363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Coughlan M.T., Yap F.Y., Tong D.C., Andrikopoulos S., Gasser A., Thallas-Bonke V., Webster D.E., Miyazaki J., Kay T.W., Slattery R.M., Kaye D.M., Drew B.G., Kingwell B.A., Fourlanos S., Groop P.H., Harrison L.C., Knip M., Forbes J.M.: Advanced glycation end products are direct modulators of beta-cell function. Diabetes. 60(10), 2523–2532 (2011). doi:10.2337/db10-1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cai W., Ramdas M., Zhu L., Chen X., Striker G.E., Vlassara H.: Oral advanced glycation endproducts (AGEs) promote insulin resistance and diabetes by depleting the antioxidant defenses AGE receptor-1 and sirtuin 1. Proc. Natl. Acad. Sci. U. S. A. 109(39), 15888–15893 (2012). doi:10.1073/pnas.1205847109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Forbes J.M., Cowan S.P., Andrikopoulos S., Morley A.L., Ward L.C., Walker K.Z., Cooper M.E., Coughlan M.T.: Glucose homeostasis can be differentially modulated by varying individual components of a western diet. J. Nutr. Biochem. 24(7), 1251–1257 (2013). doi:10.1016/j.jnutbio.2012.09.009

    Article  CAS  PubMed  Google Scholar 

  73. Yoshizaki T., Milne J.C., Imamura T., Schenk S., Sonoda N., Babendure J.L., Lu J.C., Smith J.J., Jirousek M.R., Olefsky J.M.: SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol. Cell. Biol. 29(5), 1363–1374 (2009). doi:10.1128/mcb.00705-08

    Article  CAS  PubMed  Google Scholar 

  74. Uribarri J., Cai W., Ramdas M., Goodman S., Pyzik R., Chen X., Zhu L., Striker G.E., Vlassara H.: Restriction of advanced glycation end products improves insulin resistance in human type 2 diabetes: potential role of AGER1 and SIRT1. Diabetes Care. 34(7), 1610–1616 (2011). doi:10.2337/dc11-0091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work has been supported through the funding bodies of the National Health Medical Research Council (NHMRC) Australia, Juvenile Diabetes Research Foundation (JDRF) and Kidney Health Australia (KHA). We would also like to thank Dr. Danielle Borg for her additional editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josephine M. Forbes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, A., Forbes, J.M. Diabetic kidney disease: a role for advanced glycation end-product receptor 1 (AGE-R1)?. Glycoconj J 33, 645–652 (2016). https://doi.org/10.1007/s10719-016-9693-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-016-9693-z

Keywords

Navigation