Skip to main content

Advertisement

Log in

Chromosomal regions controlling seedling drought resistance in Israeli wild barley, Hordeum spontaneum C. Koch

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The objective of the present study was to map quantitative trait loci (QTL) controlling drought-resistance traits at seedling stage of Israeli wild barley (Hordeum spontaneum). Mapping was conducted using an F4 mapping population derived from a cross between genotype WQ23-38 from xeric (Wadi Qilt, 144 mm annual rainfall) and MA10-30 from mesic (Maalot, 790 mm annual rainfall) environments. Obvious segregation was observed for traits including time to wilt, leaf relative elongation rate, recovery rate, shoot regrowth, osmolarity, relative water content, leaf length, and root length with the coefficient of variation ranging from 10 to 77%. Eighteen putative QTL effects were identified (at false discovery rate = 10%) by single-trait analyses and confirmed by multi-trait analysis and multiple interval mapping using a new MultiQTL package. The results of our study suggest that the xeric genotypes adopted survival strategies while the mesic genotypes adopted growth-sustain strategies to cope with drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acevedo E (1987) Assessing crop and plant attributes for improvement in water-limited Mediterranean environments. In: Srivastava JP, Proceddu E, Acevedo E, Varma S (eds) Drought-tolerance in winter cereals. Wiley, Chichester, pp 303–320

    Google Scholar 

  • Baek HJ, Beharav A, Nevo E (2003) Ecological-genomic diversity of microsatellites in wild barley, Hordeum spontaneum, populations in Jordan. Theor Appl Genet 106:397–410

    CAS  PubMed  Google Scholar 

  • Bajaj S, Targolli J, Liu LF, Ho THD, Wu R (1999) Transgenic approaches to increase dehydration-stress tolerance in plants. Mol Breed 5:493–503. doi:10.1023/A:1009660413133

    Article  CAS  Google Scholar 

  • Barr HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust J Biol Sci 15:413–428

    Google Scholar 

  • Baum M, Grando S, Backes G, Jahoor A, Sabbagh A, Ceccarelli S (2003) QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross ‘Arta’× H. spontaneum 41-1. Theor Appl Genet 107:1215–1225. doi:10.1007/s00122-003-1357-2

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B Methodol 57:289–300

    Google Scholar 

  • Bidinger FR, Mahalakshmi V, Rao GDP (1987) Assessment of drought resistance in pearl millet (Pennisetum americanum (L.) Leeke). I. Factors affecting yields under stress. Aust J Agric Res 38:37–48. doi:10.1071/AR9870037

    Article  Google Scholar 

  • Blum A (1988) Plant breeding for stress environments. CRC Press, Boca Raton

    Google Scholar 

  • Blum A (1989) Osmotic adjustment and growth in barley genotypes under drought stress. Crop Sci 29:230–233

    Google Scholar 

  • Blum A (1996) Crop responses to drought and the interpretation of adaptation. Plant Growth Regul 20:135–148. doi:10.1007/BF00024010

    Article  CAS  Google Scholar 

  • Bohnert HJ, Bressan RA (2001) Abiotic stresses, plant reactions, and approaches towards improving stress tolerance. In: Nössberger J (ed) Crop Science: progress and prospects. CABI International, Wallingford

    Google Scholar 

  • Bray E (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54. doi:10.1016/S1360-1385(97)82562-9

    Article  Google Scholar 

  • Cattivelli L, Baldi P, Crosatti C, Fonzo NDi, Faccioli P, Grossi M, Mastrangelo AM, Pecchioni N, Stanca AM (2002) Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol Biol 48:649–665. doi:10.1023/A:1014824404623

    Article  CAS  Google Scholar 

  • Champoux MC, Wang G, Sarkarung S, Mackill DJ, O’Toole JC, Huang N, McCouch SR (1995) Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet 90:969–981. doi:10.1007/BF00222910

    Article  CAS  Google Scholar 

  • Chen G, Krugman T, Fahima T, Korol A, Nevo E (2002) Comparative study on morphological and physiological traits related to drought resistance between xeric and mesic Hordeum spontaneum lines in Israel. Barley Genet Newsl 32:22–33

    CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed  Google Scholar 

  • Clarke JM, McCaig TN (1982) Evaluation of techniques for screening for drought resistance in wheat. Crop Sci 22:503–506

    Google Scholar 

  • Courtois B, McLaren G, Sinha PK, Prasad K, Yadav R, Shen L (2000) Mapping QTLs associated with drought avoidance in upland rice. Mol Breed 6:55–66. doi:10.1023/A:1009652326121

    Article  CAS  Google Scholar 

  • Crasta OR, Xu WW, Rosenow DT, Mullet J, Nguyen HT (1999) Mapping of post-flowering drought-resistance traits in grain sorghum: association between QTLs influencing premature senescence and maturity. Mol Gen Genet 262:579–588. doi:10.1007/s004380051120

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD, Richards RA (1984) Isotopic composition of plant carbon correlates with water-use-efficiency of wheat genotypes. Aust J Plant Physiol 11:539–552

    Article  CAS  Google Scholar 

  • Feldman M, Sears ER (1981) The wild gene resources of wheat. Sci Am 244:98–109

    Google Scholar 

  • Feuillet C, Langridge P, Waugh R (2008) Cereal breeding takes a walk on the wild side. Trends Genet 24:24–32. doi:10.1016/j.tig.2007.11.001

    Article  CAS  PubMed  Google Scholar 

  • González A, Martín I, Ayerbe L (2008) Yield and osmotic adjustment capacity of barley under terminal water-stress conditions. J Agron Crop Sci 194:81–91. doi:10.1111/j.1439-037X.2007.00289.x

    Article  Google Scholar 

  • Grandillo S, Tanksley SD, Zamir D (2007) Exploitation of natural biodiversity through genomics. In: Varshney RK, Tuberosa R (eds) Genomics-assisted crop improvement, vol 1: genomics approaches and platforms. Springer, Dordrecht, pp 121–150

    Chapter  Google Scholar 

  • Gupta PK, Rustgi S, Sharma S, Sing R, Kumar N, Balyan HS (2003) Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genomics 270:315–323. doi:10.1007/s00438-003-0921-4

    Article  CAS  PubMed  Google Scholar 

  • Harlan JR, Zohary D (1966) Distribution of wild wheats and barley. Science 153:1074–1080. doi:10.1126/science.153.3740.1074

    Article  PubMed  CAS  Google Scholar 

  • Huang Q, Beharav A, Li Y, Kirzhner V, Nevo E (2002) Mosaic microecological differential stress causes adaptive microsatellite divergence in wild barley, Hordeum spontaneum, at Neve Yaar, Israel. Genome 45:1216–1229. doi:10.1139/g02-073

    Article  CAS  PubMed  Google Scholar 

  • Ivandic V, Hackett CA, Zhang ZJ, Staub JE, Nevo E, Thomas WTB, Forster BP (2000) Phenotypic responses of wild barley to experimentally imposed water stress. J Exp Bot 51:2021–2029. doi:10.1093/jexbot/51.353.2021

    Article  CAS  PubMed  Google Scholar 

  • Ivandic V, Thomas WTB, Nevo E, Zhang Z, Forster BP (2003) Associations of simple sequence repeats with quantitative trait variation including biotic and abiotic stress tolerance in Hordeum spontaneum. Plant Breed 122:300–304. doi:10.1046/j.1439-0523.2003.00841.x

    Article  CAS  Google Scholar 

  • Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455

    CAS  PubMed  Google Scholar 

  • Jordan WR, Dougas WA, Shouse PJ (1983) Strategies for crop improvement for drought-prone regions. Agric Water Manag 7:281–299. doi:10.1016/0378-3774(83)90090-2

    Article  Google Scholar 

  • Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216

    CAS  PubMed  Google Scholar 

  • Knight H, Knight MR (2001) Abiotic stress signalling pathways specificity and cross-talk. Trends Plant Sci 6:262–267. doi:10.1016/S1360-1385(01)01946-X

    Article  CAS  PubMed  Google Scholar 

  • Korol AB, Ronin Y, Kirzhner V (1996) Linkage between quantitative trait loci and marker loci: resolution power of three statistical approaches in single marker analysis. Biometrics 52:426–441. doi:10.2307/2532884

    Article  CAS  PubMed  Google Scholar 

  • Korol AB, Ronin YI, Itskovich AM, Peng J, Nevo E (2001) Enhanced efficiency of quantitative trait loci mapping analysis based on multivariate complexes of quantitative traits. Genetics 157:1789–1803

    CAS  PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed  Google Scholar 

  • Lebreton C, Lazic-Jancic V, Steed A, Pekic S, Quarrie SA (1995) Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J Exp Bot 46:853–865. doi:10.1093/jxb/46.7.853

    Article  CAS  Google Scholar 

  • Lilley JM, Ludlow MM, McCouch SR, O’Toole JC (1996) Locating QTLs for osmotic adjustment and dehydration tolerance in rice. J Exp Bot 47:1427–1436. doi:10.1093/jxb/47.9.1427

    Article  CAS  Google Scholar 

  • Lincoln S, Daly M, Lander E (1992) Mapping genes controlling quantitative traits with MAPMAKER/QTL 1.1. Whitehead Institute Technical Report, 2nd edn. Whitehead Institute, Cambridge

    Google Scholar 

  • Lippman ZB, Semel Y, Zamir D (2007) An integrated view of quantitative trait variation using tomato interspecific introgression lines. Curr Opin Genet Dev 17:545–552. doi:10.1016/j.gde.2007.07.007

    Article  CAS  PubMed  Google Scholar 

  • Ludlow MM, Muchow RC (1990) A critical evaluation of traits for improving crop yield in water limited environments. Adv Agron 43:107–153. doi:10.1016/S0065-2113(08)60477-0

    Article  Google Scholar 

  • Mather K (1938) The measurement of linkage in heredity. Methuen, London

    Google Scholar 

  • Matin MA, Brown JH, Ferguson H (1989) Leaf water potential, relative water content, and diffusive resistance as screening techniques for drought resistance in barley. Agron J 81:100–105

    Google Scholar 

  • McDonald AJS, Davies WJ (1996) Keeping in touch: responses of the whole plant to deficits in water and nitrogen supply. Adv Bot Res 22:229–300. doi:10.1016/S0065-2296(08)60059-2

    Article  Google Scholar 

  • McIntosh RA, Hart GE, Devos KM, Gale MD, Rogers WJ (1998) Catalogue of gene symbols for wheat. In: Proceedings of 9th International. Wheat Genetics Symposium, vol 5. University Extension Press, University of Saskatchawan, Saskatoon, pp 1–235

  • Merah O (2001) Potential importance of water-status traits for durum wheat improvement under Mediterranean conditions. J Agric Sci 137:139–145. doi:10.1017/S0021859601001253

    Article  Google Scholar 

  • Mester DI, Ronin YI, Hu Y, Nevo E, Korol AB (2003) Efficient multipoint mapping: making use of dominant repulsion-phase markers. Theor Appl Genet 107:1102–1112. doi:10.1007/s00122-003-1305-1

    Article  CAS  PubMed  Google Scholar 

  • Morgan JM (1983) Osmoregulation as selection criterion for drought tolerance in wheat. Aust J Agric Res 34:607–614. doi:10.1071/AR9830607

    Article  Google Scholar 

  • Morgan JM (1995) Growth and yield of wheat lines with differing osmoregulative capacity at high soil water deficit in seasons of varying evaporative demand. Field Crops Res 40:143–152. doi:10.1016/0378-4290(94)00100-Q

    Article  Google Scholar 

  • Morgan JM, Tan MK (1996) Chromosomal location of a wheat osmoregulation gene using RFLP analysis. Aust J Plant Physiol 23:803–806

    Article  CAS  Google Scholar 

  • Nevo E (1995) Genetic resources of wild emmer, Triticum dicoccoides, for wheat improvement: news and views. In: Li ZS, Xin ZY (eds) Proceedings of 8th International Wheat Genet Symposium. China Agricultural Scientech Press, Beijing

  • Nevo E, Beiles A, Gutterman Y, Stroch N, Kaplan D (1984) Genetic resources of wild cereals in Israel and the vicinity: II. Phenotypic variation within and between populations of wild barley, Hordeum spontaneum. Euphytica 33:737–756. doi:10.1007/BF00021901

    Article  Google Scholar 

  • Nevo E, Apelbaum-Elkaher I, Garty J, Beiles A (1997) Natural selection causes microscale allozyme diversity in wild barley and a lichen at “Evolution Canyon” Mt. Carmel, Israel. Heredity 78:373–382. doi:10.1038/hdy.1997.60

    Article  Google Scholar 

  • Nevo E, Korol AB, Beiles A, Fahima T (2002) Evolution of wild emmer and wheat improvement. Population genetics, genetic resources and genome organization of wheat’s progenitor, Triticum dicoccoides. Springer, New York, p 364

    Google Scholar 

  • Nguyen HT, Babu RC, Blum A (1997) Breeding for drought resistance in rice: physiology and molecular genetics considerations. Crop Sci 37:1426–1434

    Article  Google Scholar 

  • Owuor ED, Fahima T, Beharav A, Korol A, Nevo E (1999) RAPD divergence caused by microsite edaphic selection in wild barley. Genetica 105:177–192. doi:10.1023/A:1003781711908

    Article  CAS  PubMed  Google Scholar 

  • Pakniyat H, Powell W, Baird E, Handley LL, Robinson D, Scrimgeour CM, Nevo E, Hackett CA, Caligari PDS, Forster BP (1997) AFLP variation in wild barley (Hordeum spontaneum C. Koch) with reference to salt tolerance and associated ecogeography. Genome 40:332–341. doi:10.1139/g97-046

    Article  CAS  PubMed  Google Scholar 

  • Passioura JB (1996) Drought and drought tolerance. Plant Growth Regul 20:79–83. doi:10.1007/BF00024003

    Article  CAS  Google Scholar 

  • Peng JH, Fahima T, Röder MS, Li YC, Dahan A, Grama A, Ronin YI, Korol AB, Nevo E (1999) Microsatellite tagging of stripe-rust resistance gene YrH52 derived from wild emmer wheat, Triticum dicoccoides, and suggestive negative crossover interference on chromosome 1B. Theor Appl Genet 98:862–872. doi:10.1007/s001220051145

    Article  CAS  Google Scholar 

  • Peng JH, Korol AB, Fahima T, Röder MS, Ronin YI, Li YC, Nevo E (2000) Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res 10:1509–1531. doi:10.1101/gr.150300

    Article  CAS  PubMed  Google Scholar 

  • Pennisi E (2008) The blue revolution, drop by drop, gene by gene. Science 320:171–173. doi:10.1126/science.320.5873.171

    Article  CAS  PubMed  Google Scholar 

  • Price AH, Thomas AD (1997) Genetic dissection of root growth in rice (Oryza sativa L.). II: Mapping quantitative trait loci using molecular markers. Theor Appl Genet 95:143–152. doi:10.1007/s001220050542

    Article  CAS  Google Scholar 

  • Price AH, Tomos AD, Virk DS (1997) Genetic dissection of root growth in rice (Oryza sativa L.) I: a hydroponic screen. Theor Appl Genet 95:132–142. doi:10.1007/s001220050541

    Article  Google Scholar 

  • Price AH, Townend J, Jones MP, Audebert A, Courtois B (2002) Mapping QTLs associated with drought avoidance in upland rice grown in the Philippines and West Africa. Plant Mol Biol 48:683–695. doi:10.1023/A:1014805625790

    Article  CAS  PubMed  Google Scholar 

  • Quarrie SA, Gulli M, Calestani C, Steed A, Marmiroli N (1994) Location of a gene regulating drought-induced abscisic acid production on the long arm of chromosome 5 A of wheat. Theor Appl Genet 89:794–800. doi:10.1007/BF00223721

    Article  CAS  Google Scholar 

  • Quarrie SA, Laurie DA, Zhu J, Lebreton C, Semikhodskii A, Steed A, Witsenboer H, Calestani C (1997) QTL analysis to study the association between leaf size and abscisic acid accumulation in droughted rice leaves and comparison across cereals. Plant Mol Biol 35:155–165. doi:10.1023/A:1005864202924

    Article  CAS  PubMed  Google Scholar 

  • Ramsay L, Macaulay M, Ivanissevich SD, MacLean K, Cardle L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massarie A, Maestri E, Marmiroli N, Sjakste T, Ganalg M, Powell W, Waugh R (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005

    CAS  PubMed  Google Scholar 

  • Ray JD, Yu L, McCouch SR, Champoux MC, Wang G, Nguyen HT (1996) Mapping quantitative trait loci associated with root penetration ability in rice (Oryza sativa L.). Theor Appl Genet 92:627–636. doi:10.1007/BF00226082

    Article  CAS  Google Scholar 

  • Reitz LP (1974) Breeding for more efficient water-use—is it real or a mirage? Agric Meteorol 14:3–11. doi:10.1016/0002-1571(74)90005-3

    Article  Google Scholar 

  • Ribaut JM, Hoisington DA, Deutsch JA, Jiang C, Gonzalez-de-Leon D (1996) Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval. Theor Appl Genet 92:905–914. doi:10.1007/BF00221905

    Article  CAS  Google Scholar 

  • Ribaut JM, Jiang C, Gonzalez-de-Leon D, Edmeades GO, Hoisington DA (1997) Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies. Theor Appl Genet 94:887–896. doi:10.1007/s001220050492

    Article  Google Scholar 

  • Richards RA (1988) Physiology and the breeding of winter-grown cereals for dry areas. In: Srivastrava J, Porceddu E, Acevedo E, Barma S (eds) Drought tolerance in winter cereals. Wiley, Chicester

    Google Scholar 

  • Saeed M, Francis CA (1983) Yield stability in relation to maturity in grain sorghum. Crop Sci 23:683–687

    Article  Google Scholar 

  • Satish N, Krugman T, Vinogradova ON, Nevo E, Kashi Y (2001) Genome evolution of the cyanobacterium Nostoc linckia under sharp microclimatic divergence at ‘Evolution Canyon’, Israel. Microb Ecol 42:306–316. doi:10.1007/s00248-001-0013-0

    Article  CAS  PubMed  Google Scholar 

  • Schonfeld MA, Johnson RC, Carver BF, Mornhinweg DW (1988) Water relations in winter wheat as drought resistance indicator. Crop Sci 28:526–531

    Article  Google Scholar 

  • Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop under drought conditions? Plant Cell Environ 25:333–341. doi:10.1046/j.1365-3040.2002.00754.x

    Article  PubMed  Google Scholar 

  • Shakhatreh Y, Kafawin O, Ceccarelli S, Saoub H (2001) Selection of barley lines for drought tolerance in low-rainfall areas. J Agron Crop Sci 186:119–127. doi:10.1046/j.1439-037X.2001.00459.x

    Article  Google Scholar 

  • Singh J, Patel AL (1996) Water-status, gas exchange, proline accumulation and yield of wheat in response to water deficit. Ann Biol 12:77–81

    Google Scholar 

  • Soller M, Beckmann JS (1990) Marker-based mapping of quantitative trait loci using replicated progeny. Theor Appl Genet 80:205–208. doi:10.1007/BF00224388

    Article  Google Scholar 

  • Stanhill G (1997) Smarter irrigation: an Israeli perspective. In: Poulton DD (ed) Irrigation 1997. Proceedings of Irrigation Association Conference, Shepparton

  • Suprunova T, Krugman T, Distelfeld A, Fahima T, Nevo E, Korol AB (2007) Identification of a novel gene (Hsdr4) involved in water-stress tolerance in wild barley. Plant Mol Biol 64:17–34. doi:10.1007/s11103-006-9131-x

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066. doi:10.1126/science.277.5329.1063

    Article  CAS  PubMed  Google Scholar 

  • Teulat B, This D, Khairallah M, Borries C, Ragot C, Sourdille P, Leroy P, Monneveux P, Charrier A (1998) Several QTLs involved in osmotic-adjustment trait variation in barley (Hordeum vulgare L.). Theor Appl Genet 96:688–698. doi:10.1007/s001220050790

    Article  CAS  Google Scholar 

  • Teulat B, Borries C, This D (2001) New QTLs identified for plant water status, water-soluble carbohydrate and osmotic adjustment in a barley population grown in a growth-chamber under two water regimes. Theor Appl Genet 103:161–170. doi:10.1007/s001220000503

    Article  CAS  Google Scholar 

  • Teulat B, Merah O, Sirault X, Borries C, Waugh R, This D (2002) QTLs for grain carbon isotope discrimination in field-grown barley. Theor Appl Genet 106:118–126

    CAS  PubMed  Google Scholar 

  • Teulat B, Zoumarou-Wallis N, Rotter B, Ben Salem M, Bahri H, This D (2003) QTL for relative water content in field-grown barley and their stability across Mediterranean environments. Theor Appl Genet 108:181–188. doi:10.1007/s00122-003-1417-7

    Article  CAS  PubMed  Google Scholar 

  • Tuberosa R, Parentoni S, Kim TS, Sanguineti MC, Phillips RL (1998) Mapping QTLs for ABA concentration in leaves of a maize cross segregating for anthesis date. Maize Genet Coop Newsl 72:72–73

    Google Scholar 

  • Tuinstra MR, Grote EM, Goldsbrough PB, Ejeta G (1996) Identification of quantitative trait loci with pre-flowering drought tolerance in sorghum. Crop Sci 36:1337–1344

    Article  CAS  Google Scholar 

  • Tuinstra MR, Grote EM, Goldsbrough PB, Ejeta G (1997) Genetic analysis of post-flowering drought tolerance and components of grain development in Sorghum bicolor (L.) Moench. Mol Breed 3:439–448. doi:10.1023/A:1009673126345

    Article  CAS  Google Scholar 

  • Turner NC (1997) Further progress in crop water relations. Adv Agron 58:293–338. doi:10.1016/S0065-2113(08)60258-8

    Article  Google Scholar 

  • Turpeinen T, Tenhola T, Manninen O, Nevo E, Nissila E (2001) Microsatellite diversity associated with ecology factors in Hordeum spontaneum populations in Israel. Mol Ecol 10:1577–1591. doi:10.1046/j.1365-294X.2001.01281.x

    Article  CAS  PubMed  Google Scholar 

  • Turpeinen T, Vanhala T, Nevo E, Nissila E (2003) AFLP genetic polymorphism in wild barley (Hordeum spontaneum) populations in Israel. Theor Appl Genet 106:1333–1339

    CAS  PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414. doi:10.1093/nar/23.21.4407

    Article  CAS  PubMed  Google Scholar 

  • Yadav R, Courtois B, Huang N, Mclaren G (1997) Mapping genes controlling root morphology and root distribution in a doubled haploid population of rice. Theor Appl Genet 94:619–632. doi:10.1007/s001220050459

    Article  CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed  Google Scholar 

  • Zhang J, Nguyen HT, Blum A (1999) Genetic analysis of osmotic adjustment in crop plants. J Exp Bot 50:291–302. doi:10.1093/jexbot/50.332.291

    Article  CAS  Google Scholar 

  • Zhang JX, Klueva NY, Wang Z, Wu R, Ho TH, Nguyen HT (2000) Genetic engineering for abiotic stress resistance in crop plants. In Vitro Cell Dev Biol 36:108–114

    Article  CAS  Google Scholar 

  • Zhang J, Zheng HG, Aarti A, Pantuwan G, Nguyen TT, Tripathy JN, Sarial AK, Robin S, Babu RC, Nguyen BD, Sarkarung S, Blum A, Nguyen HT (2001) Locating genomic regions associated with components of drought resistance in rice: comparative mapping within and across species. Theor Appl Genet 103:19–29. doi:10.1007/s001220000534

    Article  CAS  Google Scholar 

  • Zheng HG, Babu RC, Pathan MS, Ali ML, Huang N, Courtois B, Nguyen HT (2000) Quantitative trait loci for root penetration ability and root thickness in rice: comparison of genetic backgrounds. Genome 43:53–61. doi:10.1139/gen-43-1-53

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the following grants: German-Israeli Project Cooperation (grant DIP-B-4.3), the US AID Cooperative Development Research Program (grant TA-MOU-97_CA17-001), One Hundred Talents Project of The Chinese Academy of Sciences, the Israel Discount Bank Chair of Evolutionary Biology, the Ancell-Teicher Research Foundation for Molecular Genetics and Evolution, and the Graduate School of the University of Haifa, Israel. The authors thank Dr. Avigdor Beiles for valuable advice, Mrs. Robin Permut for editing, and Mrs. Ma Yan and Ms. Milade Naela for their field and experimental assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoxiong Chen or Abraham Korol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, G., Krugman, T., Fahima, T. et al. Chromosomal regions controlling seedling drought resistance in Israeli wild barley, Hordeum spontaneum C. Koch. Genet Resour Crop Evol 57, 85–99 (2010). https://doi.org/10.1007/s10722-009-9453-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-009-9453-z

Keywords

Navigation