Skip to main content
Log in

Towards a semi-perennial culture of Stevia rebaudiana (Bertoni) Bertoni under temperate climate: effects of genotype, environment and plant age on steviol glycoside content and composition

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Stevia rebaudiana (Bertoni) Bertoni is a perennial shrub native to Paraguay whose leaves accumulate sweetening compounds of high value: steviol glycosides (SVglys). These diterpenoids differ in the number (1–4) and the nature of sugar units bound to a steviol skeleton: mainly glucose but also rhamnose and xylose. The two main SVglys are stevioside (ST; 3 glucose units) and rebaudioside A (RA, 4 glucose units). Along with an evaluation of genotypic variability for SVglys content and composition, this study investigates the winter survival and the effect of perennial cultivation on S. rebaudiana genotypes through a 2-year experiment conducted on two locations. The first year, a population of 96 genotypes was examined in a nursery field (site A) and a subset of five genotypes was grown in a field trial (site B). The winter surviving genotypes (16 on site A and 5 on site B) were studied the following year, alongside new plantings of the same lines (8 on site A and 5 on site B). The genotypes showed a high variability in SVgly content (from 45.7 to 186.2 mg g−1 DM) and composition along four distinct clusters. There was no correlation between total SVglys content and composition. Genotypes without RA had no other SVglys with more than three conjugated sugars. SVgly content varied among environments and generally increased between 1- and 2-year-old plants, while SVgly composition remained stable. This study showed that breeding for winter survival in temperate conditions would allow an increase in SVgly productivity in a semi-perennial stevia production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andolfi L, Macchia M, Ceccarini L (2006) Agronomic-productive characteristics of two genotype of Stevia rebaudiana in central Italy. Ital J Agron 1:257–262

    Article  Google Scholar 

  • Angelini LG, Tavarini S (2014) Crop Productivity, Steviol Glycoside Yield, Nutrient Concentration and Uptake of Stevia rebaudiana Bert. under Mediterranean Field Conditions. Commun Soil Sci Plan 45:2577–2592

    Article  CAS  Google Scholar 

  • Banerjee A, Sharkey TD (2014) Methylerythritol 4-phosphate (MEP) pathway metabolic regulation. Nat Prod Rep 31:1043–1055

    Article  CAS  PubMed  Google Scholar 

  • Bondarev NI, Sukhanova MA, Reshetnyak OV, Nosov AM (2003) Steviol glycoside content in different organs of Stevia rebaudiana and its dynamics during ontogeny. Biol Plantarum 47:261–264

    Article  CAS  Google Scholar 

  • Brandle J (1999) Genetic control of rebaudioside A and C concentration in leaves of the sweet herb, Stevia rebaudiana. Can J Plant Sci 79:85–92

    Article  CAS  Google Scholar 

  • Brandle JE, Rosa N (1992) Heritability for yield, leaf-stem ratio and stevioside content estimated from a landrace cultivar of Stevia rebaudiana. Can J Plant Sci 72:1263–1266

    Article  CAS  Google Scholar 

  • Brandle JE, Telmer PG (2007) Steviol glycoside biosynthesis. Phytochem 68:1855–1863

    Article  CAS  Google Scholar 

  • Brandle JE, Starratt AN, Gijzen M (1998) Stevia rebaudiana: its agricultural, biological, and chemical properties. Can J Plant Sci 78:527–536

    Article  CAS  Google Scholar 

  • Ceunen S, Geuns JMC (2013) Influence of photoperiodism on the spatio-temporal accumulation of steviol glycosides in Stevia rebaudiana (Bertoni). Plant Sci 198:72–82

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedula VSP, Rhea J, Milanowski D, Mocek U, Prakash I (2011) Two minor diterpene glycosides from the leaves of Stevia rebaudiana. Nat Prod Commun 6:175–178

    CAS  PubMed  Google Scholar 

  • Gaurav SS, Singh YP, Sirohi SPS (2008) Genetic variability for yield and quality traits in Stevia rebaudiana (Bertoni). J Prog Res 3:95–96

    Google Scholar 

  • Geuns JMC (2003) Stevioside. Phytochem 64:913–921

    Article  CAS  Google Scholar 

  • Guleria P, Yadav SK (2013) Agrobacterium mediated transient gene silencing (AMTS) in Stevia rebaudiana: insights into steviol glycoside biosynthesis pathway. Plos One 8(9):e74731

  • Hemmerlin A (2013) Post-translational events and modifications regulating plant enzymes involved in isoprenoid precursor biosynthesis. Plant Sci 203:41–54

    Article  PubMed  Google Scholar 

  • Kennelly EJ (2002) Sweet and non-sweet constituents of Stevia rebaudiana (Bertoni) Bertoni. In: Kinghorn AD (ed) Stevia, the genus stevia medicinal and aromatic plants-industrial profiles. Taylor and Francis, London, pp 68–85

    Google Scholar 

  • Kim KK, Sawa Y, Shibata H (1996) Hydroxylation of ent-kaurenoic acid to steviol in Stevia rebaudiana Bertoni—purification and partial characterization of the enzyme. Arch Biochem Biophys 332:223–230

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Sharma S, Ramesh K, Singh B (2012) Effects of shade regimes and planting geometry on growth, yield and quality of the natural sweetener plant stevia (Stevia rebaudiana Bertoni) in north-western Himalaya. Arch Agron Soil Sci 59:963–979

    Article  Google Scholar 

  • Kumar R, Sharma S, Prasad R (2013) Yield, nutrient uptake, and quality of stevia as affected by organic sources of nutrient. Commun Soil Sci Plan 44:3137–3149

    Article  CAS  Google Scholar 

  • Kumar R, Sood S, Sharma S, Kasana RC, Pathania VL, Singh B, Singh RD (2014) Effect of plant spacing and organic mulch on growth, yield and quality of natural sweetener plant Stevia and soil fertility in western Himalayas. Int J Plant Prod 8:311–333

    Google Scholar 

  • Lavini A, Riccardi M, Pulvento C, De Luca S, Scamosci M, d’Andria R (2008) Yield, quality and water consumption of Stevia rebaudiana Bertoni grown under different irrigation regimes in southern Italy. Ital J Agron 2:9

    Google Scholar 

  • Metivier J, Viana AM (1979) Effect of long and short day length upon the growth of whole plants and the level of soluble-proteins, sugars, and stevioside in leaves of Stevia rebaudiana Bert. J Exp Bot 30:1211–1222

    Article  CAS  Google Scholar 

  • Mohamed AAA, Ceunen S, Geuns JMC, Van den Ende W, De Ley M (2011) UDP-dependent glycosyltransferases involved in the biosynthesis of steviol glycosides. J Plant Physiol 168:1136–1141

    Article  CAS  PubMed  Google Scholar 

  • Moraes RM, Donega MA, Cantrell CL, Mello SC, McChesney JD (2013) Effect of harvest timing on leaf production and yield of diterpene glycosides in Stevia rebaudiana Bert.: a speciality perennial crop for Mississippi. Ind Crop Prod 51:385–389

    Article  CAS  Google Scholar 

  • Nakamura S, Tamura Y (1985) Variation in the main glycosides of stevia (Stevia rebaudiana Bertoni). Jpn J Trop Agric 29:109–115

    CAS  Google Scholar 

  • Ohta M, Sasa S, Inoue A, Tamai T, Fujita I, Morita K, Matsuura F (2010) Characterization of novel steviol glycosides from leaves of Stevia rebaudiana Morita. J Appl Glycosci 57:199–209

    Article  CAS  Google Scholar 

  • Pal PK, Prasad R, Pathania V (2013) Effect of decapitation and nutrient applications on shoot branching, yield, and accumulation of secondary metabolites in leaves of Stevia rebaudiana Bertoni. J Plant Physiol 170:1526–1535

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  • Raji Akintunde A, Mohamad O (2011) Influence of genetic variation on morphological diversity in accessions of Stevia rebaudiana Bertoni. Int J Biol 3:66–72

    Google Scholar 

  • Richman A, Swanson A, Humphrey T, Chapman R, McGarvey B, Pocs R, Brandle J (2005) Functional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana. Plant J 41:56–67

    Article  CAS  PubMed  Google Scholar 

  • Serfaty M, Ibdah M, Fischer R, Chaimovitsh D, Saranga Y, Dudai N (2013) Dynamics of yield components and stevioside production in Stevia rebaudiana grown under different planting times, plant stands and harvest regime. Ind Crop Prod 50:731–736

    Article  CAS  Google Scholar 

  • Tateo F, Mariotti M, Bononi M, Lubian E, Martello S, Cornara L (1998) Stevioside content and morphological variability in a population of Stevia rebaudiana (Bertoni) Bertoni from Paraguay. Ital J Food Sci 10:261–267

    CAS  Google Scholar 

  • Tavarini S, Angelini LG (2013) Stevia rebaudiana Bertoni as a source of bioactive compounds: the effect of harvest time, experimental site and crop age on steviol glycoside content and antioxidant properties. J Sci Food Agric 93:2121–2129

    Article  CAS  PubMed  Google Scholar 

  • Totte N, Charon L, Rohmer M, Compernolle F, Baboeuf I, Geuns JMC (2000) Biosynthesis of the diterpenoid steviol, an ent-kaurene derivative from Stevia rebaudiana Bertoni, via the methylerythritol phosphate pathway. Tetrahedron Lett 41:6407–6410

    Article  CAS  Google Scholar 

  • Ward JL, Baker JM, Llewellyn AM, Hawkins ND, Beale MH (2011) Metabolomic analysis of Arabidopsis reveals hemiterpenoid glycosides as products of a nitrate ion-regulated, carbon flux overflow. Proc Natl Acad Sci USA 108:10762–10767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woelwer-Rieck U (2012) The leaves of Stevia rebaudiana (Bertoni), their constituents and the analyses thereof: a review. J Agric Food Chem 60:886–895

    Article  CAS  Google Scholar 

  • Yang YH, Huang SZ, Han YL, Yuan HY, Gu CS, Zhao YH (2014) Base substitution mutations in uridinediphosphate-dependent glycosyltransferase 76G1 gene of Stevia rebaudiana causes the low levels of rebaudioside A: mutations in UGT76G1, A key gene of steviol glycosides synthesis. Plant Physiol Bioch 80:220–225

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project benefited from a grant from the Oséo (FUI Stevianov F 11 07 018M) and Région Midi-Pyrénées. The authors would like to thank the members of the consortium [Epi Salvagnacois (Salvagnac, France), Stevia Natura (Riom, France), La Patellière (Condom, France) and LCA-ENSIACET (INP-Toulouse, France)]. Geoffray Laurens-Lambert and François Perdrieux are warmly and sincerely acknowledged for their assistance. The authors are grateful to Joël Perret and Mathieu Penin for help and guidance with the HPLC analyses. Ms. Bernadette Flannery is acknowledged for proof reading the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monique Berger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbet-Massin, C., Giuliano, S., Alletto, L. et al. Towards a semi-perennial culture of Stevia rebaudiana (Bertoni) Bertoni under temperate climate: effects of genotype, environment and plant age on steviol glycoside content and composition. Genet Resour Crop Evol 63, 685–694 (2016). https://doi.org/10.1007/s10722-015-0276-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-015-0276-9

Keywords

Navigation