Skip to main content

Advertisement

Log in

Recent molecular and breeding strategies in lettuce (Lactuca spp.)

  • Review
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Lettuce (Lactuca spp.) is an annual and self-pollinating crop that belongs to the Asteraceae (Compositae) family. It is one of the most globally essential commercial vegetable crops, used in salads and sandwiches. The lettuce leaves are used to make a cigarette without nicotine. Seeds and stems contain edible oil and dried latex. Gene banks have conserved a large pool of lettuce's genetic resources, including wild Lactuca species with the same chromosome numbers 2n = 2x = 18. Lactuca species vary greatly in terms of geographical distribution and morpho-agronomic characteristics. By crossing commercial varieties with locally adapted varieties, novel alleles can be introduced, increasing genetic diversity and making preselection for desirable traits easier. Lettuce breeders and geneticists' main objectives are to improve lettuce for various desirable traits, including tolerance to abiotic and biotic stress and high yield. These targets accomplished with modern genomics tools together with traditional breeding methods. This chapter discusses lettuce conservation and biodiversity, stages of lettuce breeding, agriculture practices, and conventional breeding techniques and their restrictions. It also includes modern plant breeding tools and marker-assisted breeding, editing of genome, and genetic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Harlan (1986)

Fig. 2

Source: Harlan (1986)

Fig. 3

Source: Noumedem et al. (2017)

Fig. 4

Source: FAO (2018)

Fig. 5

Source https://www.reddit.com/r/coolguides/comments/j61rd7/types_of_lettuce/

Fig. 6

Source: Ismail et al. (2016)

Fig. 7

Source: Mousavi et al. (2013)

Fig. 8

Source: Piosik et al. (2015)

Fig. 9

Source: Simko et al. (2018)

Fig. 10

Source: Mohebodini et al. (2011)

Fig. 11

Similar content being viewed by others

Availability of data and material

All data materials are available in manuscript.

References

  • Acquaah G (2012) Principles of plant genetics and breeding, 2nd edn. John Wiley and Sons, USA, pp 131–145

    Google Scholar 

  • Ahmed MB, Akhter MS, Hossain M et al (2007) An efficient Agrobacterium-mediated genetic transformation method of lettuce (Lactuca sativa L.) with an Aphidicidal gene, Pta (Pinellia ternata Agglutinin). Middle East J Sci Res 2(2):155–160

    Google Scholar 

  • Araruna K, Carlos B (2010) Anti-inflammatory activities of triterpene lactones from Lactuca sativa. Phytopharmacology 1(1):1–6

    Google Scholar 

  • Bano R, Qaiser M (2011) A taxonomic revision of the genus Lactuca L. Cichorieae-Asteraceae from Pakistan and Kashmir. Pak. J. Bot 43(5):2259–2268

    Google Scholar 

  • Berry SF, Lu DY, Pental D, Cocking EC (1982) Regeneration of plants from protoplasts of Lactuca sativa L. Z Pflanzenphysiol 108:31–38

    Article  Google Scholar 

  • Bertier LD, Ron M, Huo H et al (2018) High-resolution analysis of the efficiency, heritability and editing outcomes of CRISPR/Cas9-induced modifications of NCED4 in lettuce (Lactuca sativa). G3 8:1513–1521

  • Bohnert HJ, Nelson DE, Jensenay RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

  • Boukema IW, Hazekamp Th, van Hintum Th JL (1990) The CGN collection reviews: the CGN lettuce collection. Wageningen, Centre for Genetic Resources, pp 2–5

  • Bremer K, Anderberg AA, Karis PO et al (1994) Asteraceae: cladistics and classification. Portland, Oregon, Timber Press

  • CABI Crop Protection Compendium (2008) Lactuca sativa (lettuce) datasheet. Available at: http://www.cabi.org/cpc/datasheet/29609

  • Candela H, Casanova Saez R, Micol JL (2015) Getting started in mapping by sequencing. J Integr Plant Biol 57:606–612

    Article  PubMed  Google Scholar 

  • Cervantes CN, Laynesa FP, Pacis JB (2017) Validation and documentation of organic production systems for lettuce (Lactuca sativa) Camarines sur, Philippines. Int J Agric Tech 13:1277–1284

    Google Scholar 

  • Chen Z, Han Y, Ning K et al (2018) Inflorescence development and the role of LsFT in regulating bolting in lettuce (Lactuca sativa L). Front Plant Sci 8:2248. https://doi.org/10.3389/fpls.2017.02248

    Article  PubMed  PubMed Central  Google Scholar 

  • Christopoulou M, McHale LK, Kozik A et al (2015) Dissection of two complex clusters of resistance genes in lettuce (Lactuca sativa). Mol Plant Microbe Interact 28:751–765

    Article  CAS  PubMed  Google Scholar 

  • Chu YF, Sun J, Liu RH (2002) Antioxidant and antiproliferative activities of common vegetables. J Agri Food Chem 50:6910–6916

    Article  CAS  Google Scholar 

  • Cole RA, Sutherland RA, Riggall WE (1991) The use of polyacrylamide gradient gel electrophoresis to identify variation in isozymes as markers for Lactuca species and resistance to the lettuce root aphid Pemphigus bursarius. Euphytica 56:237–242

    Article  CAS  Google Scholar 

  • Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical transactions of the Royal Society of London Series B. Biol Sci 363:557–572

    Article  CAS  Google Scholar 

  • Cumo C (2013) Encyclopedia of cultivated plants: from Acacia to Zinnia, Kindle. ABC-CLIO Publisher, Santa Barbara, California, pp 577–578

    Google Scholar 

  • Curtis IS, Power JB, Blackhall NW et al (1994) Genotype independent transformation of lettuce using Agrobacterium tumefaciens. J Exp Bot 45(279):1441–1449

    Article  CAS  Google Scholar 

  • Dan S, Qiang H, Zhaonan D, Zhengquan H (2014) Genetic transformation of lettuce (Lactuca sativa): a review. Afr J Biotech 13(16):1686–1693

    Article  CAS  Google Scholar 

  • De Vries IM (1990) Crossing experiments of lettuce cultivars and species (Lactuca sect. Lactuca, Compositae). Plant Syst Evol 171:233–248

    Article  Google Scholar 

  • De Vries IM (1997a) Origin and domestication of Lactuca sativa L. Genet Resour Crop Evol 44:165–174

    Article  Google Scholar 

  • de Vries IM (1996) Characterization and identification of Lactuca sativa cultivars and wild relatives with SDS-electrophoresis (Lactuca sect. Lactuca, Compositae). Genet Resour Crop Evol 43:193–202

    Article  Google Scholar 

  • Dias BBA, Cunha WG, Morais LS et al (2006) Expression of an oxalate decarboxylase gene from Flammulina sp. in transgenic lettuce (Lactuca sativa) plants and resistance to Sclerotinia sclerotiorum. Plant Pathol 55:187–193

    Article  CAS  Google Scholar 

  • Doležalová I, Křístková E, Lebeda A, Vinter V (2002) Description of morphological characters of wild Lactuca L. spp. genetic resources (English-Czech version). Hort Sci (PRAGUE) 29(2):56–83

  • Dun-Chun H, Jia suiLian hui ZX (2016) Problems, challenges and future of plant disease management: from an ecological point of view. J Integr Agric 15(4):705–715

    Article  Google Scholar 

  • Dupont S, Mondi Z, Willamson G, Price K (2000) Effect of variety, processing and storage on the flavonoid glycoside and composition of lettuce and cichory. J Agric Food Chem 48:3957–3964

    Article  CAS  PubMed  Google Scholar 

  • Dziechciarková M, Lebeda A, Doležalová I, Astley D (2004) Characterization of Lactuca spp. germplasm by protein and molecular markers–a review. Plant Soil Environ 50:47–58

    Article  Google Scholar 

  • El-Esawi MA (2015) Molecular genetic markers for assessing the genetic variation and relationships in Lactuca Germplasm. ARRB 8(5):1–13

    Article  Google Scholar 

  • Fallah-Ziarani M, Haddad R, Garoosi G, Jalali M (2013) Agrobacterium-mediated transformation of cotyledonary leaf of lettuce (Lactuca sativa L.) by the GCHI gene. J Genet Plant Breed 2(2):47–55

  • FAO (2018) FAOSTAT crops. http://www.fao.org/faostat/en/#data/QC/visualize

  • Franco CH, Santos HM, Silva LP, Arthur V, Silva RGM (2015) Potential of lettuce grown from irradiated seeds. Sci Hortic 182:27–30

    Article  Google Scholar 

  • Fukuda M, Yanai Y, Nakano Y et al (2017) Isolation and gene expression analysis of flowering-related genes in lettuce (Lactuca sativa L). Hortic J 86(3):340–348

    Article  CAS  Google Scholar 

  • George RAT (1999) Compositae. In: George RAT (ed) Vegetable seed production. CAB International, Wallingford, pp 122–1353

    Google Scholar 

  • Grulich V (2004) Lactuca L. In: Slavík B, Štěpánková J (eds) Květena České Republiky 7. Academia, Praha, pp 487–497

    Google Scholar 

  • Gupta A, Tashi D, Chattoo M, Yasmin S (2008) Estimation of genetic variability and heritability in lettuce (Lactuca sativa L.). Indian J Plant Genet Resour 21(2):138–140

  • Gurdon C, Poulev A, Armas I et al (2019) Genetic and phytochemical characterization of lettuce flavonoid biosynthesis mutants. Sci Rep 9:3305. https://doi.org/10.1038/s41598-019-39287-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hancock JF (2004) Plant evolution and the origin of crop species, 2nd edn. CABI Publishing, Walling ford

    Google Scholar 

  • Harlan JR (1986) Lettuce and the sycamore: sex and romance in ancient Egypt. Econ Bot 40:4–15

    Article  Google Scholar 

  • Harsha SN, Kumar AKR (2012) Effects of Lactuca sativa extract on exploratory behavior pattern, locomotor activity and anxiety in mice. Asian Pac J Trop Dis 2:S475-479

    Article  Google Scholar 

  • Harsha SN, Kumar AKR (2013) Anxiolytic property of hydo-alcohol extract of Lactuca sativa and its effect on behavioral and biochemical activity. J Biomed Res 27(1):37–42

    CAS  PubMed  Google Scholar 

  • Hartman Y, Hooftman DAP, Uwimana B et al (2014) Abiotic stress QTL in lettuce crop-wild hybrids: comparing greenhouse and field experiments. Ecology Evolution 4:2395–2409

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill M, Witsenboer H, Zabeau M et al (1996) PCR-based fingerprinting using AFLPs as tool for studying genetic relationship in Lactuca spp. Theor Appl Genet 93:1202–1210

    Article  CAS  PubMed  Google Scholar 

  • Van Hintum T (2009) Molecular characterization of a lettuce germplasm collection. Eucarpia Leafy Vegetables 99–104

  • Hooftman DA, Oostermeijer JGB, Jacobs MM, Den Nijs HC (2005) Demographic vital rates determine the performance advantage of crop–wild hybrids in lettuce. J Appl Ecol 42(6):1086–1095

    Article  Google Scholar 

  • Huo H, Henry IM, Coppoolse ER et al (2016) Rapid identification of lettuce seed germination mutants by bulked segregant - analysis and whole genome sequencing. Plant J 88(3):345–360. https://doi.org/10.1111/tpj.13267

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa Y, Tamoi M, Sakuyama H et al (2010) Generation of transplastomic lettuce with enhanced growth and high yield. GM Crops 1(5):322–326

    Article  PubMed  Google Scholar 

  • Ismail H, Dilshad E, Mirza B (2016) Transformation of Lactuca sativa L. with rol C gene results in increased antioxidant potential and enhanced analgesic, anti-inflammatory and antidepressant activities in vivo. 3 Biotech 6(2) doi:https://doi.org/10.1007/s13205-016-0533-4

  • Jackson M, Ekkehard H (2008) Transgenic lettuce seedlings carrying hepatitis B virus antigen HBsAg. Braz J Infect Dis 12(6):469–471

    Article  Google Scholar 

  • Jansen J, Verbakel H, Peleman J, van Hintum TJL (2006) A note on the measurement of genetic diversity within gene bank accessions of lettuce (Lactuca sativa L.) using AFLP markers. Theor Appl Genet 112:554–561

    Article  CAS  PubMed  Google Scholar 

  • Jenni S, Truco M, Michelmore R (2013) Quantitative trait loci associated with tipburn, heat stress-induced physiological disorders, and maturity traits in crisphead lettuce. Theor Appl Genet 126:3065–3079

    Article  Google Scholar 

  • Jeuken M, van Wijk R, Peleman J, Lindhout P (2001) An integrated interspecific AFLP map of lettuce (Lactuca) based on two L. sativa × L. saligna F2 populations. Theor Appl Genet 103:638–647

    Article  CAS  Google Scholar 

  • Kanamoto H, Yamashita A, Asao H et al (2006) Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids. Trans Res 15:205–217

    Article  CAS  Google Scholar 

  • Katz SH, Weaver WW (2003) Encyclopedia of food and culture. Schribner, New York

    Google Scholar 

  • Kesseli R, Ochoa O, Michelmore R (1991) Variation at RFLP loci in Lactuca spp. and origin of cultivated lettuce (L. sativa). Genome 34:430–436

    Article  Google Scholar 

  • Kesseli RV, Paran I, Michelmore RW (1994) Analysis of a detailed genetic linkage map of Lactuca sativa (Lettuce) constructed from RFLP and RAPD markers. Genetics 136:1435–1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MJ, Moon YY, Tou JC et al (2016) Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). J Food Compos Anal 49:19–34

    Article  CAS  Google Scholar 

  • Koopman WJM, Zevenbergen MJ, Ronald G, Van den Berg RG (2001) Species relationship in Lactuca s. l. (Lactuceae, Asteraceae) inferred from AFLP fingerprints. Am J Bot 88:1881–1887

    Article  CAS  PubMed  Google Scholar 

  • Koornneef M (2002) Classical mutagenesis in higher plants. In: Gilmartin PM (ed) Molecular plant biology. Oxford University Press, Oxford, UK, pp 1–11

    Google Scholar 

  • Kozi T (2018) Smart plant factory. the next generation indoor vertical farms. Springer Nature, Singapore

    Google Scholar 

  • Křístková E, Doležalová I, Lebeda A et al (2008) Description of morphological characters of lettuce (Lactuca sativa L.) genetic resources. Hort Sci (Prague) 35(3):113–129

    Article  Google Scholar 

  • Kumar R, Kaushal S, Kumar S et al (2016) Morphological characterization of newly introduced lettuce (Lactuca sativa L.) germplasm through principal component and regression analyses. Elect J Plant Breed 7(3):742–749

    Article  Google Scholar 

  • Landry BS, Kesseli R, Farrara B, Michelmore RW (1987) A genetic map of lettuce (Lactuca sativa L.) with restriction fragment length polymorphism, isozymes, disease resistance and morphological markers. Genetics 116:331–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebeda A, Křístková E, Doležalová I, Kitner M, Widrlechner MP (2019) Wild Lactuca Species in North America. Iowa State University, Horticulture Publication

  • Lebeda A, Astley D (1999) World genetic resources of Lactuca spp. their taxonomy and biodiversity. In: Lebeda A, Křístková E (eds) Eucarpia leafy vegetables 99. Proceedings of the Eucarpia Meeting of Leafy Vegetables Genetics and Breeding, Palacký University, Olomouc, Czech Republic, pp 81–94

  • Lebeda A, Ryder EJ, Grube R et al (2007) Lettuce (Asteraceae; Lactuca spp.). In: Singh RJ (ed) Genetic resources, chromosome engineering and crop improvement, vol 3. Vegetable crops. CRC Press, Tailor and Francis Group, Boca Raton, pp 377–472

  • Lettuce Genome Resource (2017) https://lgr.genomecenter.ucdavis.edu

  • Li Z, Zhao X, Sandhu AK, Gu L (2010) Effects of exogenous abscisic acid on yield, antioxidant, capacities and phytochemical contents of greenhouse grown lettuces. J Agric Food Chem 58:6503–6509

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Felipe P, Yang YH, Kim MY, Kwon OY, Sok D, Kim HC, Kim MR (2009) Effects of dietary supplementation with red-pigmented leafy lettuce (Lactuca sativa) on lipid profiles and antioxidant status in C57BL/6J mice fed a high-fat high-cholesterol diet. Br J Nutr 101(8):1246–1254. https://doi.org/10.1017/S0007114508073650

  • Lindqvist K (1960a) Cytogenetic studies in the srriola group of Lactuca. Hereditas 46:75–151

    Article  Google Scholar 

  • Lindqvist K (1960b) On the origin of cultivated lettuce. Hereditas 46:319–350

    Article  Google Scholar 

  • Liu L, Liu Z, Chen H et al (2011) SRAP markers and morphological traits could be used in test of distinctiveness, uniformity, and stability (DUS) of Lettuce (Lactuca sativa) Varieties. J Agric Sci 4(3):227–236

    Google Scholar 

  • Llorach R, Martínez-Sánchez A, Tomas-Barberán IA et al (2008) Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chem 108:1028–1038

    Article  CAS  PubMed  Google Scholar 

  • Mao Y, Wu F, Yu X et al (2014) microRNA 319 a-targeted brassica Rapa ssp. pekinensis TCP genes modulate head shape in Chinese cabbage by differential cell division arrest in leaf regions. Plant Physiol 164(2):710–720 doi: https://doi.org/10.1104/pp.113.228007

  • Matvieieva NA, Vasylenko MYu, Shakhovsky AM, Kuchuk NV (2009) Agrobacterium-mediated transformation of lettuce (Lactuca sativa L.) with genes coding bacterial antigens from mycobacterium tuberculosis. Cytol Genet 43(2):94–98

  • Maxted N, Hawkes JG, Ford-Lloyd BV, Williams JT (1997) A practical model for in situ genetic conservation complementary conservation strategies. Chapman and Hall, London pp 339–367

  • McCabe MS, Garratt LC, Schepers F et al (2001) Effects of PSAG12-IPT gene expression on development and senescence in transgenic lettuce. Plant Physiol 127:505–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michelmore RW (1995) Isolation of disease resistance genes from crop plants. Curr Opin Biotech 6:145–152

    Article  CAS  Google Scholar 

  • Michelmore RW, Ochoa OE, Truco MJ (2002) Breeding crisphead lettuce. California Lettuce Research Board Annual Report The Board. Pennsylvania State University pp 51–54

  • Mohebodini M, Javaran MJ, Mahboudi F, Alizadeh H (2011) Effects of genotype, explant age and growth regulators on callus induction and direct shoot regeneration of lettuce (Lactuca sativa L.). Aust J Crop Sci 5(1):92–95

    CAS  Google Scholar 

  • Mohebodini M, Jalali-Javaran M, Alizadeh H et al (2014) Agrobacterium-mediated transformation of lettuce (Lactuca sativa L.) to express IgG-binding protein A and human pro-insulin as a fusion protein. J Hortic Sci Biotech 89(6):719–725

    Article  CAS  Google Scholar 

  • Moreno-Vázquez S, Ochoa OE, Faber N et al (2003) SNP-based codominant markers for a recessive gene conferring resistance to corky root rot (Rhizomonas suberifaciens) in lettuce (Lactuca sativa). Genome 46:1059–1069

    Article  PubMed  Google Scholar 

  • Mou B (2011) Review article. mutations in lettuce improvement. Int J Plant Genom 2011:1–7. https://doi.org/10.1155/2011/723518

    Article  Google Scholar 

  • Mou B (2008) Lettuce. In: Prohens J, Neuz F (eds) Handbook of plant breeding. Vegetables I: Asteraceae, Brassicaceae, Chenopodicaceae, and Cucurbitaceae. New York: Springer, pp 75–116

  • Mousavi SH, Hassandokht MR, Choukan R et al (2013) Genetic diversity of Iranian lettuce (Lactuca sativa L.) accessions revealed by cytological traits. Caryologia 66(1):41–48. https://doi.org/10.1080/00087114.2013.780440

    Article  Google Scholar 

  • Mulabagal V, Ngouajjo M, Nair A et al (2010) In vitro evaluation of red and green lettuce (Lactuca sativa) for functional food properties. Food Chem 118:300–306

    Article  CAS  Google Scholar 

  • Nicolle C, Cardinault N, Gueux E et al (2004) Health effect of vegetable-based diet: Lettuce consumption improves cholesterol metabolism and antioxidant status in the rat. Clin Nutr 23:605–614

    Article  CAS  PubMed  Google Scholar 

  • Noumedem JAK, Dieussi DE, Hritcu L et al (2017) Lactuca sativa Kuete V (ed) Medicinal spices and vegetables from Africa: Therapeutic potential against metabolic, inflammatory, infectious and systematic diseases, US: Academic Pres, pp 437–449

  • Nybom H, Weising K, Rotter B (2014) DNA fingerprinting in botany: past, present, future. Investig Genet 5:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park J, Choi S, Park S et al (2019) DNA-free genome editing via ribonucleoprotein (RNP) delivery of CRISPR/Cas in lettuce. In: Kuete V (ed) Plant genome editing with CRISPR systems: methods and protocols. Springer, New York, pp 337–354

    Chapter  Google Scholar 

  • Pileggi M, Pereira AAM, Silva JS et al (2001) An improved method for transformation of Lettuce by Agrobacterium tumefaciens with a gene that confers freezing resistance. Braz Arch Biol Technol 44(2):191–196

    Article  CAS  Google Scholar 

  • Piosik L, Zenkteler E, Zenkteler M (2015) Development of haploid embryos and plants of Lactuca sativa induced by distant pollination with Helianthus annuus and H. tuberosus. Euphytica 208:439–451

    Article  CAS  Google Scholar 

  • Pitrat M (2012) Vegetables crops in the mediterranean basin with an overview of virus resistance. Adv Virus Res 84:1–29

    Article  PubMed  Google Scholar 

  • Porcel R, Aroca R, Azco´n R, Ruiz-Lozano JM, (2006) PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Mol Biol 60:389–404

    Article  CAS  PubMed  Google Scholar 

  • Rafalski J, Tingey S (1993) Genetic diagnostics in plant breed: RAPDs, microsatellites and machines. Trends Genet 9:275–280

    Article  CAS  PubMed  Google Scholar 

  • Ragheb E (2015) Mass selection and individual plant selection as two breeding methods for improving lettuce (Lactuca sativa L.). Alex J Agric Sci 3:213–220

    Google Scholar 

  • Rai MK, Kalia RK, Singh R et al (2011) Developing stress tolerant plants through in vitro selection-an overview of the recent progress. Environ Exp Bot 71(1):89–98

    Article  Google Scholar 

  • Rauscher G, Simko I (2013) Development of genomic SSR markers for fingerprinting lettuce (Lactuca sativa L.) cultivars and mapping genes. BMC Plant Biol 13:1–11

    Article  CAS  Google Scholar 

  • Reyes-Chin-Wo S, Wang Z, Yang X et al (2017) Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nature Commun 8:14953. https://doi.org/10.1038/ncomms14953

    Article  CAS  Google Scholar 

  • Riar DS, Rustgi S, Burke IC et al (2011) EST-SSR Development from 5 Lactuca Species and Their Use in Studying Genetic Diversity Among L. serriola Biotypes. J Hered 102 (1):17–28

  • Roberts J, Broadley MR, Pink D et al (2020) Quantitative trait loci (QTLs) linked with root growth in lettuce (Lactuca sativa) seedlings. Mol Breed 40(1):8

    Article  CAS  Google Scholar 

  • Romani A, Pinelli P, Galardi C et al (2002) Polyphenols in greenhouse and open air-grown lettuce. Food Chem 79:337–342

    Article  CAS  Google Scholar 

  • Rubatzky VE, Yamaguchi M (1997) World Vegetables. Chapman and Hall, New York

    Book  Google Scholar 

  • Ruhlman T, Ahangari R, Devine A et al (2007) Expression of cholera toxin B-proinsulin fusion protein in lettuce and tobacco chloroplasts-oral administration protects against development of insulitis in non-obese diabetic mice. Plant Biotech J 5(4):495–510

    Article  CAS  Google Scholar 

  • Rui S, Qi G, Shuangxi F et al (2020) Analysis of genetic diversity in purple lettuce (Lactuca sativa l.) by SSR markers. Pak J Bot 52(1):181–196

    Article  Google Scholar 

  • Rulkens AJH (1987) DECGN sla collectie: inventarisatie, paspoort gegevens en enkele richtlijnen voor de toekomst. CGN report, CGN-T, CGN, Wageningen:51

  • Ryder EJ (1986) Lettuce breeding. In: Basset MJ (ed) Breeding vegetable crops. The AVI Publishing Company Inc, Westport, pp 433–474

    Google Scholar 

  • Ryder EJ (1991) Salinas 88 lettuce. HortSci 26:439–440

    Article  Google Scholar 

  • Ryder EJ (1997) Introduction. In: Davis RM, Subbarao KV, Raid RN, Kurtz EA (eds) Compendium of lettuce diseases. Aps Press, St Paul, Minnesota, pp 1–8

    Google Scholar 

  • Sariçam SK, Kantoğlu YŞ, Ellialtioğl SU (2017) Tissue culture applications in lettuce (Lactuca sativa L). Afro J Pharm Pharmacol 1(2):88–95

    Google Scholar 

  • Sariçam S, Kantoğlu KY, Ellialtioğlu SS (2017b) Determination of effective mutagen dose for lettuce (Lactuca sativa var. longifolia cv. Cervantes) Seeds. Eurasian J Agric Res 1(2):96–101

  • Serafini M, Bugianes R, Salucci M et al (2002) Effect of acute ingestion of fresh and stored lettuce (Lactuca sativa) on plasma total antioxidant levels in human subjects. Br J Nutr 88:615–623

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MR (2014) Somatic hybridization via protoplasts fusion in Lactuca sativa (Lettuce) and it’s fused product response to culture media. J Agric Res 52(1):1–9

    Google Scholar 

  • Simko I, Atallah AJ, Ochoa OE et al (2013) Identification of QTLs conferring resistance to downy mildew in legacy cultivars of lettuce. Sci Rep 3:2875

    Article  PubMed  PubMed Central  Google Scholar 

  • Simko I, Hayes RJ, Truco M, Antonise MRW, R, Massoudi M, (2018) Molecular markers reliably predict postharvest deterioration of fresh-cut lettuce in modified atmosphere packaging. Horticulture Res 5(21):1–13

    CAS  Google Scholar 

  • Simko I, Pechenick DA, McHale L et al (2010) Development of molecular markers for marker-assisted selection of dieback disease resistance in lettuce (Lactuca sativa). Acta Hort 401–408

  • Simko I (2008) Development of EST-SSR markers for the study of population structure in lettuce (Lactuca sativa L.). J Hered 100(2):256–262

    Article  PubMed  CAS  Google Scholar 

  • Sochor M, Jemelková M, Doležalová I (2019) Phenotyping and SSR markers as a tool for identification of duplicates in lettuce germplasm. CJGPB 55(3):110–119

    CAS  Google Scholar 

  • Souza MM, Resende LV, Menezes D et al (2008) Genetic variability for agronomic characteristics in lettuce progenies with heat tolerance. Hortic Bras 26:354–358

    Article  Google Scholar 

  • Stebbins GL (1937) The scandent species of Prenanthes and Lactuca in Africa. Bulletin Du Jardin Botanique De L’état a Bruxelles 14:333–352

    Article  Google Scholar 

  • Still DW (2007) Lettuce. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 5. vegetables. Springer, Berlin, pp 127–140

    Google Scholar 

  • Taniguchi T, Sato T, Maeda K, Maeda E (1990) Microscopic observations of fusion process of rice and lettuce protoplasts. Curr Plant Sci Biotech Agric 8:281–298

    Article  Google Scholar 

  • Tardin FD, Júnior ATA, Pereira MG et al (2003) Genetic diversity and determination of the optimum number of RAPD markers in lettuce (Lactuca sativa L.). Acta Scientiarum: Agronomy Maringá 25(1):1–5

    CAS  Google Scholar 

  • Tashi D, Gupta AJ, Ahmed N (2010) Variability, heritability and genetic advance in lettuce. Indian J Hortic 67:193–196

    Google Scholar 

  • Till BJ, Cooper J, Tai TH et al (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Truco MJ, Antonise R, Lavelle D et al (2007) A high-density, integrated genetic linkage map of lettuce (Lactuca spp.). Theor Appl Genet 115:735–746

    Article  CAS  PubMed  Google Scholar 

  • Truco MJ, Ashrafi H, Kozik A et al (2013) An ultra-high-density, transcript-based, genetic map of lettuce. G3 (Bethesda) 3:617–631

  • Uwimana B, Smulders MJM, Hooftman DAP et al (2012) Hybridization between crops and wild relatives: the contribution of cultivated lettuce to the vigour of crop–wild hybrids under drought, salinity and nutrient deficiency conditions. Theor Appl Genet 125:1097–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uwimana B (2011) A genetic analysis of the introgression process from cultivated lettuce (Lactuca sativa L.) to wild prickly lettuce (L. serriola L). PhD thesis, Wageningen University, The Netherlands

  • Van de Wiel C, Arens P, Vosman B (1998) Microsatellite fingerprinting in lettuce (Lactuca sativa L.) and wild relatives. Plant Cell Rep 17:837–842

    Article  PubMed  Google Scholar 

  • Van de Wiel C, Arens P, Vosman B (1999) Microsatellite retrieval in lettuce (Lactuca sativa L.). Genome 42:139–149

    Article  PubMed  Google Scholar 

  • Van Treuren R, Van Hintum JL (2009) Comparison of anonymous and targeted molecular markers for the estimation of genetic diversity in ex-situ conserved Lactuca. Theor Appl Genet 119:1265–1279

    Article  PubMed  PubMed Central  Google Scholar 

  • Vermeulen A, Desprez B, Lancelin D, Bannerot H (1994) Relationship among Cichorium species and related genera as determined by analysis of mitochondrial RFLPs. Theor Appl Genet 88:159–166

    Article  CAS  PubMed  Google Scholar 

  • Walley PG, Hough G, Moore JD et al (2017) Towards new sources of resistance to the currant-lettuce aphid (Nasonovia ribisnigri). Mol Breed 37(4):1–18

    CAS  Google Scholar 

  • Whitaker TW (1969) Salads for everyone - a look at the lettuce plant. Econ Bot 23:261–264

    Article  Google Scholar 

  • Williams M (2012) Organic lettuce and leafy greens. University of Kentucky Cooperative Extension service.

  • Witsenboer H, Vogel J, Michelmore RW (1997) Identification, genetic localization, and allelic diversity of selectively amplified microsatellite polymorphic loci in lettuce and wild relatives (Lactuca spp.). Genome 40:923–936

    Article  CAS  PubMed  Google Scholar 

  • Woo JW, Kim J, Kwon SI, Corvalan C et al (2015) DNA-free genome editing in plants with preassembled CRISPRCas9 ribonucleoproteins. Nat Biotechnol 33:1162–1164. https://doi.org/10.1038/nbt.3389

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Nishikawa A, Oeda K (1994) DNA polymorphisms in Oryza sativa L. and Lactuca sativa L. amplified by arbitrary primed PCR. Euphytica 78:143–148

    Article  CAS  Google Scholar 

  • Zohary D (1991) The wild genetic resources of cultivated lettuce (Lactuca sativa L.). Euphytica 53:31–35

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank bot Botany and Microbiology Department, and Biotechnology Department, Faculty of Science, Helwan University.

Funding

No funding received for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eman Tawfik.

Ethics declarations

Conflict of interest

The authors have nothing to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, M.N., Mekkawy, S.A., Mahdy, M. et al. Recent molecular and breeding strategies in lettuce (Lactuca spp.). Genet Resour Crop Evol 68, 3055–3079 (2021). https://doi.org/10.1007/s10722-021-01246-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-021-01246-w

Keywords

Navigation