Skip to main content

Advertisement

Log in

Silicon: an essential element for plant nutrition and phytohormones signaling mechanism under stressful conditions

  • Review paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Silicon (Si) is one of the essential and important elements that plays a vital role in the growth and productivity of crop plants by improving their nutritional status. The exogenous application of Si activates plant defense and phytohormones signaling mechanisms under biotic and abiotic stresses. Different soil factors such as soil pH, texture, organic matter, and temperature significantly influence the bioavailability and solubility of Si in the soil system. However, the uptake, transport, and accumulation of Si within the plants depend upon Si-transporters including LSi1, LSi2, and LSi6 that are present in the roots of plants. From the past few decades, the role of Si in mineral nutrient deficiencies, toxicities, biotic and abiotic stresses is being explored in cereals crops. Si improves the plant resistance against pathogenic stress, salinity, drought, heat, and heavy metals by regulating the defense system. In addition, Si facilitates the uptake of essential nutrients and restricts metal ions by making conjugates, provides mechanical strength to plant cell wall, and enhances the resistance against unwanted environmental conditions. It potentially regulates phytohormones biosynthesis, improves photosynthetic attributes, and increases the activities of antioxidant enzymes to reduce the harmful impacts of reactive oxygen species (ROS) and other toxic ions. Furthermore, the actual mechanisms behind Si-mediated alterations in plants under mineral nutrient stress are still unclear; however, a little literature is available on other abiotic stresses. Therefore, this study summarizes the findings from various investigations for better understanding the mechanism, regulation, and crosstalk among different phytohormones, micro- and macro-nutrient disorders, other biotic and abiotic stresses and their possible solutions in response to exogenous applications of Si (soil or foliar). Overall, this study suggested that Si supplementation significantly enhances the physio-biochemical attributes, defensive mechanism, hormonal regulation, and activates the regulation of expression pattern of stress responsive genes under stressful conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adrees M, Ali S, Rizwan M, Zia-ur-Rehman M, Ibrahim M, Abbas F, Farid M, Qayyum MF, Irshad MK (2015) Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicol Environ Saf 119:186–197

    Article  CAS  PubMed  Google Scholar 

  • Alhousari F, Greger M (2018) Silicon and mechanisms of plant resistance to insect pests. Plants 7(2):33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali N, Réthoré E, Yvin J-C, Hosseini SA (2020) The regulatory role of silicon in mitigating plant nutritional stresses. Plants 9(12):1779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anschütz U, Becker D, Shabala S (2014) Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. J Plant Physiol 171(9):670–687

    Article  PubMed  Google Scholar 

  • Anwaar SA, Ali S, Ali S, Ishaque W, Farid M, Farooq MA, Najeeb U, Abbas F, Sharif M (2015a) Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage. Environ Sci Pollut Res 22(5):3441–3450

    Article  CAS  Google Scholar 

  • Anwaar SA, Ali S, Ali S, Ishaque W, Farid M, Farooq MA, Najeeb U, Abbas F, Sharif M (2015b) Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage. Environ Sci Pollut Res Int 22(5):3441–3450. doi:https://doi.org/10.1007/s11356-014-3938-9

    Article  CAS  PubMed  Google Scholar 

  • Awan SA, Ilyas N, Khan I, Raza MA, Rehman AU, Rizwan M, Rastogi A, Tariq R, Brestic M (2020) Bacillus siamensis reduces cadmium accumulation and improves growth and antioxidant defense system in two wheat (Triticum aestivum L.) varieties. Plants 9:8787

  • Awan SA, Khan I, Rizwan M, Ali Z, Ali S, Khan N, Arumugam N, Almansour AI, Ilyas N (2022a) A new technique for reducing accumulation, transport, and toxicity of heavy metals in wheat (Triticum aestivum L.) by bio-filtration of river wastewater. Chemosphere 294:133642

  • Awan SA, Khan I, Rizwan M, Zhang X, Brestic M, Khan A, El-Sheikh MA, Alyemeni MN, Ali S, Huang L (2021) Exogenous abscisic acid and jasmonic acid restrain polyethylene glycol‐induced drought by improving the growth and antioxidative enzyme activities in pearl millet. Physiologia Plantarum 172:809–8192

  • Awan SA, Khan I, Tariq R, Rizwan M, Wang X, Zhang X, Huang L (2022b) Genome-Wide Expression and Physiological Profiling of Pearl Millet Genotype Reveal the Biological Pathways and Various Gene Clusters Underlying Salt Resistance. Front Plant Sci 13:849618

    Article  PubMed  PubMed Central  Google Scholar 

  • Barcelo J, Guevara P, Poschenrieder C (1993) Silicon amelioration of aluminium toxicity in teosinte (Zea mays L. ssp. mexicana). Plant Soil 154(2):249–255

    Article  CAS  Google Scholar 

  • Bhardwaj S, Sharma D, Singh S, Ramamurthy PC, Verma T, Pujari M, Singh J, Kapoor D, Prasad R (2022) Physiological and molecular insights into the role of silicon in improving plant performance under abiotic stresses.Plant and Soil:1–19

  • Bhat JA, Shivaraj S, Singh P, Navadagi DB, Tripathi DK, Dash PK, Solanke AU, Sonah H, Deshmukh R (2019) Role of silicon in mitigation of heavy metal stresses in crop plants. Plants 8(3):71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bickford CP (2016) Ecophysiology of leaf trichomes. Funct Plant Biol 43(9):807–814

    Article  PubMed  Google Scholar 

  • Bita C, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Bityutskii N, Pavlovic J, Yakkonen K, Maksimović V, Nikolic M (2014) Contrasting effect of silicon on iron, zinc and manganese status and accumulation of metal-mobilizing compounds in micronutrient-deficient cucumber. Plant Physiol biochemistry: PPB 74:205–211. doi:https://doi.org/10.1016/j.plaphy.2013.11.015

    Article  CAS  Google Scholar 

  • Bityutskii NP, Yakkonen KL, Petrova AI, Lukina KA, Shavarda AL (2018) Silicon ameliorates iron deficiency of cucumber in a pH-dependent manner. J Plant Physiol 231:364–373. doi:https://doi.org/10.1016/j.jplph.2018.10.017

    Article  CAS  PubMed  Google Scholar 

  • Bokor B, Soukup M, Vaculík M, Vd’ačný P, Weidinger M, Lichtscheidl I, Vávrová S, Šoltys K, Sonah H, Deshmukh R (2019) Silicon uptake and localisation in date palm (Phoenix dactylifera)–a unique association with sclerenchyma. Front Plant Sci 10:988

    Article  PubMed  PubMed Central  Google Scholar 

  • Borrell J, Dodsworth S, Forest F, Pérez-Escobar OA, Lee M, Mattana E, Stevenson P, Howes M-J, Pritchard HW, Ballesteros D (2020) The climatic challenge: Which plants will people use in the next century? Environ Exp Bot 170:103872

    Article  CAS  Google Scholar 

  • Bosnić D, Nikolić D, Timotijević G, Pavlović J, Vaculík M, Samardžić J, Nikolić M (2019) Silicon alleviates copper (Cu) toxicity in cucumber by increased Cu-binding capacity. Plant Soil 441(1):629–641

    Article  Google Scholar 

  • Bouain N, Krouk G, Lacombe B, Rouached H (2019) Getting to the root of plant mineral nutrition: combinatorial nutrient stresses reveal emergent properties. Trends Plant Sci 24(6):542–552

    Article  CAS  PubMed  Google Scholar 

  • Brunings AM, Datnoff LE, Ma JF, Mitani N, Nagamura Y, Rathinasabapathi B, Kirst M (2009) Differential gene expression of rice in response to silicon and rice blast fungus Magnaporthe oryzae. Ann Appl Biol 155(2):161–170. doi:https://doi.org/10.1111/j.1744-7348.2009.00347.x

    Article  CAS  Google Scholar 

  • Chaiwong N, Prom-U-Thai C, Bouain N, Lacombe B, Rouached H (2018) Individual versus combinatorial effects of silicon, phosphate, and iron deficiency on the growth of lowland and upland rice varieties. Int J Mol Sci 19(3):899

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaves MM, Costa JM, Saibo NJM (2011) Recent advances in photosynthesis under drought and salinity. Adv Bot Res 57:49–104

    Article  CAS  Google Scholar 

  • Chen D, Cao B, Qi L, Yin L, Wang S, Deng X (2016a) Silicon-moderated K-deficiency-induced leaf chlorosis by decreasing putrescine accumulation in sorghum. Ann Botany 118(2):305–315

    Article  CAS  Google Scholar 

  • Chen D, Cao B, Wang S, Liu P, Deng X, Yin L, Zhang S (2016b) Silicon moderated the K deficiency by improving the plant-water status in sorghum. Sci Rep 6(1):1–14

    Google Scholar 

  • Chen W, Yao X, Cai K, Chen J (2011) Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biol Trace Elem Res 142(1):67–76

    Article  CAS  PubMed  Google Scholar 

  • Chérel I, Lefoulon C, Boeglin M, Sentenac H (2014) Molecular mechanisms involved in plant adaptation to low K + availability. J Exp Bot 65(3):833–848

    Article  PubMed  Google Scholar 

  • Cocker KM, Evans DE, Hodson MJ (1998) The amelioration of aluminium toxicity by silicon in higher plants: solution chemistry or an in planta mechanism? Physiol Plant 104(4):608–614

    Article  CAS  Google Scholar 

  • Coskun D, Deshmukh R, Sonah H, Menzies JG, Reynolds O, Ma JF, Kronzucker HJ, Bélanger RR (2019) The controversies of silicon’s role in plant biology. New Phytol 221(1):67–85

    Article  PubMed  Google Scholar 

  • da Cunha KPV, do Nascimento CWA (2009) Silicon effects on metal tolerance and structural changes in maize (Zea mays L.) grown on a cadmium and zinc enriched soil. Water Air Soil Pollut 197(1):323–330

    Article  Google Scholar 

  • de Oliveira RLL, de Mello Prado R, Felisberto G, Checchio MV, Gratão PL (2019) Silicon mitigates manganese deficiency stress by regulating the physiology and activity of antioxidant enzymes in sorghum plants. J Soil Sci Plant Nutr 19(3):524–534

    Article  Google Scholar 

  • de Sousa A, Saleh AM, Habeeb TH, Hassan YM, Zrieq R, Wadaan MA, Hozzein WN, Selim S, Matos M, AbdElgawad H (2019) Silicon dioxide nanoparticles ameliorate the phytotoxic hazards of aluminum in maize grown on acidic soil. Sci Total Environ 693:133636

    Article  PubMed  Google Scholar 

  • de Souza Mateus N, de Oliveira Ferreira EV, Junior JCA, Domec J-C, Jordan-Meille L, de Moraes Gonçalves JL, Lavres J (2019) The ideal percentage of K substitution by Na in Eucalyptus seedlings: Evidences from leaf carbon isotopic composition, leaf gas exchanges and plant growth. Plant Physiol Biochem 137:102–112

    Article  PubMed  Google Scholar 

  • De Vos M, Van Oosten VR, Van Poecke RM, Van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Métraux J-P, Van Loon LC, Dicke M (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microbe Interact 18(9):923–937

    Article  CAS  PubMed  Google Scholar 

  • Debona D, Rodrigues FA, Datnoff LE (2017) Silicon’s role in abiotic and biotic plant stresses. Annu Rev Phytopathol 55:85–107

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh RK, Vivancos J, Guérin V, Sonah H, Labbé C, Belzile F, Bélanger RR (2013) Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice. Plant Mol Biol 83(4–5):303–315

    Article  CAS  PubMed  Google Scholar 

  • Dias P, Sampaio M, Rodrigues M, Korndörfer A, Oliveira R, Ferreira S, Korndörfer G (2014) Induction of resistance by silicon in wheat plants to alate and apterous morphs of Sitobion avenae (Hemiptera: Aphididae). Environ Entomol 43(4):949–956

    Article  CAS  PubMed  Google Scholar 

  • Dragišić Maksimović J, Mojović M, Maksimović V, Römheld V, Nikolic M (2012) Silicon ameliorates manganese toxicity in cucumber by decreasing hydroxyl radical accumulation in the leaf apoplast. J Exp Bot 63(7):2411–2420. doi:https://doi.org/10.1093/jxb/err359

    Article  CAS  PubMed  Google Scholar 

  • Epstein E (1999) Silicon. Annu Rev Plant Biol 50(1):641–664

    Article  CAS  Google Scholar 

  • Erb M, Meldau S, Howe GA (2012) Role of phytohormones in insect-specific plant reactions. Trends Plant Sci 17(5):250–259. doi:https://doi.org/10.1016/j.tplants.2012.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etesami H, Jeong BR (2018) Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicol Environ Saf 147:881–896

    Article  CAS  PubMed  Google Scholar 

  • Etienne P, Desclos M, Le Gou L, Gombert J, Bonnefoy J, Maurel K, Le Dily F, Ourry A, Avice J-C (2007) N-protein mobilisation associated with the leaf senescence process in oilseed rape is concomitant with the disappearance of trypsin inhibitor activity. Funct Plant Biol 34(10):895–906

    Article  CAS  PubMed  Google Scholar 

  • Exley C, Guerriero G, Lopez X (2019) Silicic acid: The omniscient molecule. Sci Total Environ 665:432–437

    Article  CAS  PubMed  Google Scholar 

  • Exley C, Guerriero G, Lopez X (2020) How is silicic acid transported in plants? Silicon 12(11):2641–2645

    Article  CAS  Google Scholar 

  • Feng R, Wang L, Yang J, Zhao P, Zhu Y, Li Y, Yu Y, Liu H, Rensing C, Wu Z (2020) Underlying mechanisms responsible for restriction of uptake and translocation of heavy metals (metalloids) by selenium via root application in plants.Journal of Hazardous Materials:123570

  • Fleck AT, Nye T, Repenning C, Stahl F, Zahn M, Schenk MK (2011) Silicon enhances suberization and lignification in roots of rice (Oryza sativa). J Exp Bot 62(6):2001–2011

    Article  CAS  PubMed  Google Scholar 

  • Fleck AT, Schulze S, Hinrichs M, Specht A, Waßmann F, Schreiber L, Schenk MK (2015) Silicon promotes exodermal Casparian band formation in Si-accumulating and Si-excluding species by forming phenol complexes. PLoS ONE 10(9):e0138555

    Article  PubMed  PubMed Central  Google Scholar 

  • Foucault Y, Lévèque T, Xiong T, Schreck E, Austruy A, Shahid M, Dumat C (2013) Green manure plants for remediation of soils polluted by metals and metalloids: Ecotoxicity and human bioavailability assessment. Chemosphere 93(7):1430–1435

    Article  CAS  PubMed  Google Scholar 

  • Frick DA, Remus R, Sommer M, Augustin J, Kaczorek D, von Blanckenburg F (2020) Silicon uptake and isotope fractionation dynamics by crop species. Biogeosciences 17(24):6475–6490

    Article  CAS  Google Scholar 

  • Garg N, Bhandari P (2016) Interactive effects of silicon and arbuscular mycorrhiza in modulating ascorbate-glutathione cycle and antioxidant scavenging capacity in differentially salt-tolerant Cicer arietinum L. genotypes subjected to long-term salinity. Protoplasma 253(5):1325–1345

    Article  CAS  PubMed  Google Scholar 

  • Gierth M, Mäser P (2007) Potassium transporters in plants–involvement in K + acquisition, redistribution and homeostasis. FEBS Lett 581(12):2348–2356

    Article  CAS  PubMed  Google Scholar 

  • Głazowska S, Baldwin L, Mravec J, Bukh C, Hansen TH, Jensen MM, Fangel JU, Willats WGT, Glasius M, Felby C, Schjoerring JK (2018) The impact of silicon on cell wall composition and enzymatic saccharification of Brachypodium distachyon. Biotechnol Biofuels 11(1):171. doi:https://doi.org/10.1186/s13068-018-1166-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong H, Randall D, Flowers T (2006) Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant Cell Environ 29(10):1970–1979

    Article  CAS  PubMed  Google Scholar 

  • Gonzalo MJ, Lucena JJ, Hernández-Apaolaza L (2013) Effect of silicon addition on soybean (Glycine max) and cucumber (Cucumis sativus) plants grown under iron deficiency. Plant Physiol biochemistry: PPB 70:455–461. doi:https://doi.org/10.1016/j.plaphy.2013.06.007

    Article  CAS  Google Scholar 

  • Greger M, Landberg T, Vaculík M (2018) Silicon influences soil availability and accumulation of mineral nutrients in various plant species. Plants 7(2):41

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu H-H, Zhan S-S, Wang S-Z, Tang Y-T, Chaney RL, Fang X-H, Cai X-D, Qiu R-L (2012) Silicon-mediated amelioration of zinc toxicity in rice (Oryza sativa L.) seedlings. Plant Soil 350(1):193–204. doi:https://doi.org/10.1007/s11104-011-0894-8

    Article  CAS  Google Scholar 

  • Gururani MA, Mohanta TK, Bae H (2015) Current understanding of the interplay between phytohormones and photosynthesis under environmental stress. Int J Mol Sci 16(8):19055–19085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haddad C, Arkoun M, Jamois F, Schwarzenberg A, Yvin J-C, Etienne P, Laîné P (2018) Silicon promotes growth of Brassica napus L. and delays leaf senescence induced by nitrogen starvation. Front Plant Sci 9:516

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall CR, Waterman JM, Vandegeer RK, Hartley SE, Johnson SN (2019) The Role of Silicon in Antiherbivore Phytohormonal Signalling. Front Plant Sci 10(1132). doi:https://doi.org/10.3389/fpls.2019.01132

  • Han Y, Lei W, Wen L, Hou M (2015) Silicon-mediated resistance in a susceptible rice variety to the rice leaf folder, Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae). PLoS ONE 10(4):e0120557

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartley SE, DeGabriel JL (2016) The ecology of herbivore-induced silicon defences in grasses. Funct Ecol 30(8):1311–1322

    Article  Google Scholar 

  • Haynes RJ, Zhou YF (2018) Effect of pH and added slag on the extractability of Si in two Si-deficient sugarcane soils. Chemosphere 193:431–437. doi:https://doi.org/10.1016/j.chemosphere.2017.10.175

    Article  CAS  PubMed  Google Scholar 

  • Hodson MJ, Sangster A (1993) The interaction between silicon and aluminium in Sorghum bicolor (L.) Moench: growth analysis and X-ray microanalysis. Ann Botany 72(5):389–400

    Article  CAS  Google Scholar 

  • Hoffmann J, Berni R, Hausman J-F, Guerriero G (2020) A review on the beneficial role of silicon against salinity in non-accumulator crops: tomato as a model. Biomolecules 10(9):1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horst WJ, Fecht M, Naumann A, Wissemeier AH, Maier P (1999) Physiology of manganese toxicity and tolerance in Vigna unguiculata (L.) Walp. J Plant Nutr Soil Sci 162(3):263–274

    Article  CAS  Google Scholar 

  • Hosseini SA, Maillard A, Hajirezaei MR, Ali N, Schwarzenberg A, Jamois F, Yvin J-C (2017) Induction of Barley Silicon Transporter HvLsi1 and HvLsi2, increased silicon concentration in the shoot and regulated Starch and ABA Homeostasis under Osmotic stress and Concomitant Potassium Deficiency. Front Plant Sci 8:1359

    Article  PubMed  PubMed Central  Google Scholar 

  • Hosseini SA, Naseri Rad S, Ali N, Yvin J-C (2019) The ameliorative effect of silicon on maize plants grown in Mg-deficient conditions. Int J Mol Sci 20(4):969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou M, Han Y (2010) Silicon-mediated rice plant resistance to the Asiatic rice borer (Lepidoptera: Crambidae): effects of silicon amendment and rice varietal resistance. J Econ Entomol 103(4):1412–1419

    Article  CAS  PubMed  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  CAS  PubMed  Google Scholar 

  • Hu AY, Che J, Shao JF, Yokosho K, Zhao XQ, Shen RF, Ma JF (2018) Silicon accumulated in the shoots results in down-regulation of phosphorus transporter gene expression and decrease of phosphorus uptake in rice. Plant Soil 423(1):317–325

    Article  CAS  Google Scholar 

  • Hu J, Li Y, Jeong BR (2020) Silicon alleviates temperature stresses in poinsettia by regulating stomata, photosynthesis, and oxidative damages. Agronomy 10(9):1419

    Article  Google Scholar 

  • Hu Q, Qian R, Zhang Y, Zhang X, Ma X, Zheng J (2021) Physiological and Gene Expression Changes of Clematis crassifolia and Clematis cadmia in Response to Heat Stress. Front Plant Sci 12:421

    Google Scholar 

  • Hussain I, Parveen A, Rasheed R, Ashraf MA, Ibrahim M, Riaz S, Afzaal Z, Iqbal M (2019) Exogenous silicon modulates growth, physio-chemicals and antioxidants in barley (Hordeum vulgare L.) exposed to different temperature regimes. Silicon 11(6):2753–2762

    Article  CAS  Google Scholar 

  • Imtiaz M, Rizwan MS, Mushtaq MA, Ashraf M, Shahzad SM, Yousaf B, Saeed DA, Rizwan M, Nawaz MA, Mehmood S (2016) Silicon occurrence, uptake, transport and mechanisms of heavy metals, minerals and salinity enhanced tolerance in plants with future prospects: a review. J Environ Manage 183:521–529

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki K, Maier P, Fecht M, Horst WJ (2002) Effects of silicon supply on apoplastic manganese concentrations in leaves and their relation to manganese tolerance in cowpea (Vigna unguiculata (L.) Walp.). Plant Soil 238(2):281–288. doi:https://doi.org/10.1023/A:1014482911196

    Article  CAS  Google Scholar 

  • Jing T, Du W, Gao T, Wu Y, Zhang N, Zhao M, Jin J, Wang J, Schwab W, Wan X, Song C (2021) Herbivore-induced DMNT catalyzed by CYP82D47 plays an important role in the induction of JA-dependent herbivore resistance of neighboring tea plants. Plant Cell Environ 44(4):1178–1191. doi:https://doi.org/10.1111/pce.13861

    Article  CAS  PubMed  Google Scholar 

  • Jung B, Ludewig F, Schulz A, Meissner G, Woestefeld N, Fluegge U-I, Pommerrenig B, Wirsching P, Sauer N, Koch W (2015) Identification of the transporter responsible for sucrose accumulation in sugar beet taproots. Nat Plants 1(1):1–6

    Article  Google Scholar 

  • Kapoor D, Bhardwaj S, Landi M, Sharma A, Ramakrishnan M, Sharma A (2020) The impact of drought in plant metabolism: how to exploit tolerance mechanisms to increase crop production. Appl Sci 10(16):5692

    Article  CAS  Google Scholar 

  • Kaya C, Akram NA, Ashraf M, Alyemeni MN, Ahmad P (2020) Exogenously supplied silicon (Si) improves cadmium tolerance in pepper (Capsicum annuum L.) by up-regulating the synthesis of nitric oxide and hydrogen sulfide. J Biotechnol 316:35–45

    Article  CAS  PubMed  Google Scholar 

  • Kaya C, Tuna L, Higgs D (2006) Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. J Plant Nutr 29(8):1469–1480

    Article  CAS  Google Scholar 

  • Keeping MG, Kvedaras OL, Bruton AG (2009) Epidermal silicon in sugarcane: cultivar differences and role in resistance to sugarcane borer Eldana saccharina. Environ Exp Bot 66(1):54–60

    Article  CAS  Google Scholar 

  • Keller C, Rizwan M, Davidian J-C, Pokrovsky O, Bovet N, Chaurand P, Meunier J-D (2015) Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 µM Cu. Planta 241(4):847–860

    Article  CAS  PubMed  Google Scholar 

  • Khan A, Bilal S, Khan AL, Imran M, Al-Harrasi A, Al-Rawahi A, Lee I-J (2020a) Silicon-mediated alleviation of combined salinity and cadmium stress in date palm (Phoenix dactylifera L.) by regulating physio-hormonal alteration. Ecotoxicol Environ Saf 188:109885

    Article  CAS  PubMed  Google Scholar 

  • Khan A, Kamran M, Imran M, Al-Harrasi A, Al-Rawahi A, Al-Amri I, Lee I-J, Khan AL (2019) Silicon and salicylic acid confer high-pH stress tolerance in tomato seedlings. Sci Rep 9(1):1–16

    Article  Google Scholar 

  • Khan A, Khan AL, Imran M, Asaf S, Kim Y-H, Bilal S, Numan M, Al-Harrasi A, Al-Rawahi A, Lee I-J (2020b) Silicon-induced thermotolerance in Solanum lycopersicum L. via activation of antioxidant system, heat shock proteins, and endogenous phytohormones. BMC Plant Biol 20:1–18

    Article  Google Scholar 

  • Khan I, Awan SA, Ikram R, Rizwan M, Akhtar N, Yasmin H, Sayyed RZ, Ali S, Ilyas N, (2021a) Effects of 24-epibrassinolide on plant growth, antioxidants defense system, and endogenous hormones in two wheat varieties under drought stress. Physiologia Plantarum 172:696–7062

  • Khan I, Awan SA, Raza MA, Rizwan M, Tariq R, Ali S, Huang L, (2021b) Silver nanoparticles improved the plant growth and reduced the sodium and chlorine accumulation in pearl millet: a life cycle study. Environ Sci Pollut Res 28:13712–1372411

  • Khan I, Awan SA, Rizwan M, Ali S, Hassan MJ, Brestic M, Zhang X, Huang L (2021c) Effects of silicon on heavy metal uptake at the soil-plant interphase: A review. Ecotoxicol Environ Saf 222:112510

    Article  CAS  PubMed  Google Scholar 

  • Khan I, Awan SA, Rizwan M, Ali S, Zhang X, Huang L (2021d) Arsenic behavior in soil-plant system and its detoxification mechanisms in plants: A review. Environmental Pollution:117389

  • Khan I, Raza MA, Awan SA, Shah GA, Rizwan M, Ali B, Tariq R, Hassan MJ, Alyemeni MN, Brestic M, (2020c) Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): The oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiology and Biochemistry 156:221–232

  • Kidd P, Llugany M, Poschenrieder C, Gunse B, Barcelo J (2001) The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J Exp Bot 52(359):1339–1352

    CAS  PubMed  Google Scholar 

  • Kim YH, Khan AL, Hamayun M, Kang SM, Beom YJ, Lee IJ (2011) Influence of short-term silicon application on endogenous physiohormonal levels of Oryza sativa L. under wounding stress. Biol Trace Elem Res 144(1–3):1175–1185. doi:https://doi.org/10.1007/s12011-011-9047-4

    Article  CAS  PubMed  Google Scholar 

  • Knight CT, Kinrade SD (2001) A primer on the aqueous chemistry of silicon. Studies in plant science, vol 8. Elsevier, pp 57–84

  • Kogan M, Lattin JD (1999) Agricultural systems as ecosystems. Handbook of pest management. CRC Press, pp 23–56

  • Kostic L, Nikolic N, Bosnic D, Samardzic J, Nikolic M (2017) Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions. Plant Soil 419(1):447–455

    Article  CAS  Google Scholar 

  • Kramell R, Atzorn R, Schneider G, Miersch O, Brückner C, Schmidt J, Sembdner G, Parthier B (1995) Occurrence and identification of jasmonic acid and its amino acid conjugates induced by osmotic stress in barley leaf tissue. J Plant Growth Regul 14(1):29. doi:https://doi.org/10.1007/BF00212643

    Article  CAS  Google Scholar 

  • Krishnasamy K, Bell R, Ma Q (2014) Wheat responses to sodium vary with potassium use efficiency of cultivars. Front Plant Sci 5:631

    Article  PubMed  PubMed Central  Google Scholar 

  • Krzesłowska M, Rabęda I, Basińska A, Lewandowski M, Mellerowicz EJ, Napieralska A, Samardakiewicz S, Woźny A (2016) Pectinous cell wall thickenings formation–a common defense strategy of plants to cope with Pb. Environ Pollut 214:354–361

    Article  PubMed  Google Scholar 

  • Kumar S, Adiram-Filiba N, Blum S, Sanchez-Lopez JA, Tzfadia O, Omid A, Volpin H, Heifetz Y, Goobes G, Elbaum R (2020) Siliplant1 protein precipitates silica in sorghum silica cells. J Exp Bot 71(21):6830–6843

    Article  CAS  PubMed  Google Scholar 

  • Lambers H, Chapin F III, Pons T (2008) Plant physiological ecology.,(Springer: New York)

  • Lang DY, Fei PX, Cao GY, Jia XX, Li YT, Zhang XH (2019) Silicon promotes seedling growth and alters endogenous IAA, GA3 and ABA concentrations in Glycyrrhiza uralensis under 100 mM NaCl stress. J Hortic Sci Biotechnol 94(1):87–93. doi:https://doi.org/10.1080/14620316.2018.1450097

    Article  CAS  Google Scholar 

  • Laxa M, Liebthal M, Telman W, Chibani K, Dietz K-J (2019) The role of the plant antioxidant system in drought tolerance. Antioxidants 8(4):94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SK, Sohn EY, Hamayun M, Yoon JY, Lee IJ (2010) Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agroforest Syst 80(3):333–340. doi:https://doi.org/10.1007/s10457-010-9299-6

    Article  Google Scholar 

  • Leigh RA, Wyn Jones R (1984) A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytol 97(1):1–13

    Article  CAS  Google Scholar 

  • Li P, Song A, Li Z, Fan F, Liang Y (2012) Silicon ameliorates manganese toxicity by regulating manganese transport and antioxidant reactions in rice (Oryza sativa L.). Plant Soil 354(1):407–419. doi:https://doi.org/10.1007/s11104-011-1076-4

    Article  CAS  Google Scholar 

  • Liang X, Wang H, Hu Y, Mao L, Sun L, Dong T, Nan W, Bi Y (2015a) Silicon does not mitigate cell death in cultured tobacco BY-2 cells subjected to salinity without ethylene emission. Plant Cell Rep 34(2):331–343. doi:https://doi.org/10.1007/s00299-014-1712-6

    Article  CAS  PubMed  Google Scholar 

  • Liang Y (1999) Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil 209(2):217–224

    Article  CAS  Google Scholar 

  • Liang Y, Nikolic M, Bélanger R, Gong H, Song A (2015b) Effect of silicon on crop growth, yield and quality. Silicon in Agriculture. Springer, pp 209–223

  • Liang Y, Sun W, Zhu Y-G, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147(2):422–428

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Lu W, Ma Q, Ma C (2017a) Effect of silicon on the alleviation of boron toxicity in wheat growth, boron accumulation, photosynthesis activities, and oxidative responses. J Plant Nutr 40(17):2458–2467. doi:https://doi.org/10.1080/01904167.2017.1380817

    Article  CAS  Google Scholar 

  • Liu HX, Guo ZG (2013) Forage yield and water use efficiency of alfalfa applied with silicon under water deficit conditions. Philipp Agric Sci 96:370–376

    Google Scholar 

  • Liu J, Zhu J, Zhang P, Han L, Reynolds OL, Zeng R, Wu J, Shao Y, You M, Gurr GM (2017b) Silicon Supplementation Alters the Composition of Herbivore Induced Plant Volatiles and Enhances Attraction of Parasitoids to Infested Rice Plants. Front Plant Sci 8(1265). doi:https://doi.org/10.3389/fpls.2017.01265

  • Liu P, Yin L, Deng X, Wang S, Tanaka K, Zhang S (2014) Aquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L. J Exp Bot 65(17):4747–4756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P, Yin L, Wang S, Zhang M, Deng X, Zhang S, Tanaka K (2015) Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L. Environ Exp Bot 111:42–51

    Article  CAS  Google Scholar 

  • Lohani N, Singh MB, Bhalla PL (2020) High temperature susceptibility of sexual reproduction in crop plants. J Exp Bot 71(2):555–568

    Article  CAS  PubMed  Google Scholar 

  • Lux A, Luxová M, Hattori T, Inanaga S, Sugimoto Y (2002) Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance. Physiol Plant 115(1):87–92

    Article  CAS  PubMed  Google Scholar 

  • Luyckx M, Berni R, Cai G, Lutts S, Guerriero G (2019) Impact of heavy metals on non-food herbaceous crops and prophylactic role of Si. Plant Metallomics and Functional Omics. Springer, pp 303–321

  • Luyckx M, Hausman J-F, Lutts S, Guerriero G (2017) Silicon and plants: current knowledge and technological perspectives. Front Plant Sci 8:411

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma CC, Li QF, Gao YB, Xin TR (2004) Effects of silicon application on drought resistance of cucumber plants. Soil Sci Plant Nutr 50(5):623–632

    Article  Google Scholar 

  • Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci plant Nutr 50(1):11–18

    Article  CAS  Google Scholar 

  • Ma JF, Goto S, Tamai K, Ichii M (2001) Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiol 127(4):1773–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma JF, Tamai K, Ichii M, Wu GF (2002) A rice mutant defective in Si uptake. Plant Physiol 130(4):2111–2117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448(7150):209–212

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu X-Y, Su Y-H, McGrath SP, Zhao F-J (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the National Academy of Sciences 105 (29):9931–9935

  • Malik MA, Wani AH, Mir SH, Rehman IU, Tahir I, Ahmad P, Rashid I (2021) Elucidating the role of silicon in drought stress tolerance in plants. Plant Physiol Biochem 165:187–195

    Article  CAS  PubMed  Google Scholar 

  • Markovich O, Steiner E, Kouřil Å, Tarkowski P, Aharoni A, Elbaum R (2017) Silicon promotes cytokinin biosynthesis and delays senescence in Arabidopsis and Sorghum. Plant Cell Environ 40(7):1189–1196. doi:https://doi.org/10.1111/pce.12913

    Article  CAS  PubMed  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants Academic Press San Diego. Mineral nutrition of higher plants, 2nd edn. Academic Press, San Diego, CA:-

    Google Scholar 

  • Martin KR (2013) Silicon: the health benefits of a metalloid. Interrelations between essential metal ions and human diseases:451–473

  • Massey FP, Hartley SE (2009) Physical defences wear you down: progressive and irreversible impacts of silica on insect herbivores. J Anim Ecol 78(1):281–291

    Article  PubMed  Google Scholar 

  • Miao B-H, Han X-G, Zhang W-H (2010) The ameliorative effect of silicon on soybean seedlings grown in potassium-deficient medium. Ann Botany 105(6):967–973

    Article  CAS  Google Scholar 

  • Ming D, Pei Z, Naeem M, Gong H, Zhou W (2012) Silicon alleviates PEG-induced water‐deficit stress in upland rice seedlings by enhancing osmotic adjustment. J Agron Crop Sci 198(1):14–26

    Article  CAS  Google Scholar 

  • Mir RA, Bhat BA, Yousuf H, Islam ST, Raza A, Rizvi MA, Charagh S, Albaqami M, Sofi PA, Zargar SM (2022) Multidimensional Role of Silicon to Activate Resilient Plant Growth and to Mitigate Abiotic Stress. Front Plant Sci 13:819658

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitani N, Chiba Y, Yamaji N, Ma JF (2009) Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice. Plant Cell 21(7):2133–2142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moradtalab N, Weinmann M, Walker F, Höglinger B, Ludewig U, Neumann G (2018) Silicon Improves Chilling Tolerance During Early Growth of Maize by Effects on Micronutrient Homeostasis and Hormonal Balances. Front Plant Sci 9(420). doi:https://doi.org/10.3389/fpls.2018.00420

  • Moran PJ, Thompson GA (2001) Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiol 125(2):1074–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muneer S, Park YG, Kim S, Jeong BR (2017) Foliar or subirrigation silicon supply mitigates high temperature stress in strawberry by maintaining photosynthetic and stress-responsive proteins. J Plant Growth Regul 36(4):836–845

    Article  CAS  Google Scholar 

  • Nazaralian S, Majd A, Irian S, Najafi F, Ghahremaninejad F, Landberg T, Greger M (2017) Comparison of silicon nanoparticles and silicate treatments in fenugreek. Plant Physiol Biochem 115:25–33

    Article  CAS  PubMed  Google Scholar 

  • Nelwamondo A, Jaffer MA, Dakora FD (2001) Subcellular organization of N2-fixing nodules of cowpea (Vigna unguiculata) supplied with silicon. Protoplasma 216(1–2):94–100. doi:https://doi.org/10.1007/bf02680136

    Article  CAS  PubMed  Google Scholar 

  • Neu S, Schaller J, Dudel EG (2017) Silicon availability modifies nutrient use efficiency and content, C: N: P stoichiometry, and productivity of winter wheat (Triticum aestivum L.). Sci Rep 7(1):1–8

    Article  Google Scholar 

  • Neumann D, Zur Nieden U (2001) Silicon and heavy metal tolerance of higher plants. Phytochemistry 56(7):685–692

    Article  CAS  PubMed  Google Scholar 

  • Nikolic DB, Nesic S, Bosnic D, Kostic L, Nikolic M, Samardzic JT (2019) Silicon Alleviates Iron Deficiency in Barley by Enhancing Expression of Strategy II Genes and Metal Redistribution. Front Plant Sci 10:416. doi:https://doi.org/10.3389/fpls.2019.00416

    Article  PubMed  PubMed Central  Google Scholar 

  • Oddo E, Inzerillo S, Grisafi F, Sajeva M, Salleo S, Nardini A (2014) Does short-term potassium fertilization improve recovery from drought stress in laurel? Tree Physiol 34(8):906–913

    Article  PubMed  Google Scholar 

  • Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K (2017) Transcriptional regulatory network of plant heat stress response. Trends Plant Sci 22(1):53–65

    Article  CAS  PubMed  Google Scholar 

  • da Patrícia V, Williams Araújo do Nascimento C, José da Silva A (2008) Silicon alleviates the toxicity of cadmium and zinc for maize (Zea mays L.) grown on a contaminated soil. J Plant Nutr Soil Sci 171(6):849–853. doi:https://doi.org/10.1002/jpln.200800147

    Article  CAS  Google Scholar 

  • Pavlovic J, Samardzic J, Kostic L, Laursen KH, Natic M, Timotijevic G, Schjoerring JK, Nikolic M (2016) Silicon enhances leaf remobilization of iron in cucumber under limited iron conditions. Ann Bot 118(2):271–280. doi:https://doi.org/10.1093/aob/mcw105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlů J, Novák J, Koukalová V, Luklová M, Brzobohatý B, Černý M (2018) Cytokinin at the Crossroads of Abiotic Stress Signalling Pathways. Int J Mol Sci 19(8):2450

    Article  PubMed  PubMed Central  Google Scholar 

  • Pereira de Souza Junior J, de Mello Prado R, Machado dos Santos Sarah M, Felisberto G (2019) Silicon mitigates boron deficiency and toxicity in cotton cultivated in nutrient solution. J Plant Nutr Soil Sci 182(5):805–814

    Article  CAS  Google Scholar 

  • Prychid CJ, Rudall PJ, Gregory M (2003) Systematics and biology of silica bodies in monocotyledons. Bot Rev 69(4):377–440

    Article  Google Scholar 

  • Rasoolizadeh A, Labbé C, Sonah H, Deshmukh RK, Belzile F, Menzies JG, Bélanger RR (2018) Silicon protects soybean plants against Phytophthora sojae by interfering with effector-receptor expression. BMC Plant Biol 18(1):97

    Article  PubMed  PubMed Central  Google Scholar 

  • Rastogi A, Yadav S, Hussain S, Kataria S, Hajihashemi S, Kumari P, Yang X, Brestic M (2021a) Does silicon really matter for the photosynthetic machinery in plants…. Plant Physiol Biochem 169:40–48

    Article  CAS  PubMed  Google Scholar 

  • Rastogi A, Yadav S, Hussain S, Kataria S, Hajihashemi S, Kumari P, Yang X, Brestic M (2021b) Does silicon really matter for the photosynthetic machinery in plants… Plant Physiology and Biochemistry

  • Rea RS, Islam MR, Rahman MM, Nath B, Mix K (2022) Growth, Nutrient Accumulation, and Drought Tolerance in Crop Plants with Silicon Application: A Review. Sustainability 14(8):4525

    Article  CAS  Google Scholar 

  • Reynolds OL, Keeping MG, Meyer JH (2009) Silicon-augmented resistance of plants to herbivorous insects: a review. Ann Appl Biol 155(2):171–186

    Article  CAS  Google Scholar 

  • Rolfe BG, Djordjevic MA, Weinman JJ, Mathesius U, Pittock C, Gärtner E, Ride KM, Dong Z, McCully M, McIver J (1997) Root morphogenesis in legumes and cereals and the effect of bacterial inoculation on root development. In: Ladha JK, de Bruijn FJ, Malik KA (eds) Opportunities for Biological Nitrogen Fixation in Rice and Other Non-Legumes: Papers presented at the Second Working Group Meeting of the Frontier Project on Nitrogen Fixation in Rice held at the National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan, 13–15 October 1996. Springer Netherlands, Dordrecht, pp 131–144. doi:https://doi.org/10.1007/978-94-011-7113-7_13

  • Saha G, Mostofa MG, Rahman MM, Tran L (2021) Silicon-mediated heat tolerance in higher plants: A mechanistic outlook. Plant Physiol Biochemistry: PPB 166:341–347

    Article  CAS  PubMed  Google Scholar 

  • Sangster A, Hodson M, Tubb H (2001) Silicon deposition in higher plants. Studies in Plant Science, vol 8. Elsevier, pp 85–113

  • Schaller J, Cramer A, Carminati A, Zarebanadkouki M (2020) Biogenic amorphous silica as main driver for plant available water in soils. Sci Rep 10(1):1–7

    Article  Google Scholar 

  • Schaller J, Faucherre S, Joss H, Obst M, Goeckede M, Planer-Friedrich B, Peiffer S, Gilfedder B, Elberling B (2019) Silicon increases the phosphorus availability of Arctic soils. Sci Rep 9(1):1–11

    Article  CAS  Google Scholar 

  • Schaller J, Puppe D, Kaczorek D, Ellerbrock R, Sommer M (2021) Silicon cycling in soils revisited. Plants 10(2):295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Kumar V, Shahzad B, Ramakrishnan M, Singh Sidhu GP, Bali AS, Handa N, Kapoor D, Yadav P, Khanna K (2020a) Photosynthetic response of plants under different abiotic stresses: a review. J Plant Growth Regul 39(2):509–531

    Article  CAS  Google Scholar 

  • Sharma A, Wang J, Xu D, Tao S, Chong S, Yan D, Li Z, Yuan H, Zheng B (2020b) Melatonin regulates the functional components of photosynthesis, antioxidant system, gene expression, and metabolic pathways to induce drought resistance in grafted Carya cathayensis plants. Sci Total Environ 713:136675

    Article  CAS  PubMed  Google Scholar 

  • Shi Q, Bao Z, Zhu Z, He Y, Qian Q, Yu J (2005a) Silicon-mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochemistry 66(13):1551–1559

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Zhang C, Wang H, Zhang F (2005b) Effect of Si on the distribution of Cd in rice seedlings. Plant Soil 272(1):53–60

    Article  CAS  Google Scholar 

  • Shi Y, Zhang Y, Han W, Feng R, Hu Y, Guo J, Gong H (2016) Silicon enhances water stress tolerance by improving root hydraulic conductance in Solanum lycopersicum L. Front Plant Sci 7:196

    Article  PubMed  PubMed Central  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6(5):410–417. doi:https://doi.org/10.1016/s1369-5266(03)00092-x

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Kumar A, Hartley S, Singh IK (2020) Silicon: its ameliorative effect on plant defense against herbivory. J Exp Bot 71(21):6730–6743

    Article  CAS  PubMed  Google Scholar 

  • Sommer M, Kaczorek D, Kuzyakov Y, Breuer J (2006) Silicon pools and fluxes in soils and landscapes—a review. J Plant Nutr Soil Sci 169(3):310–329

    Article  CAS  Google Scholar 

  • Song A, Li P, Fan F, Li Z, Liang Y (2014) The effect of Silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L.) under high-zinc stress. PLoS ONE 9(11):e113782. doi:https://doi.org/10.1371/journal.pone.0113782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song X-P, Verma KK, Tian D-D, Zhang X-Q, Liang Y-J, Huang X, Li C-N, Li Y-R (2021) Exploration of silicon functions to integrate with biotic stress tolerance and crop improvement.Biological Research54

  • Sonobe K, Hattori T, An P, Tsuji W, Eneji AE, Kobayashi S, Kawamura Y, Tanaka K, Inanaga S (2010) Effect of silicon application on sorghum root responses to water stress. J Plant Nutr 34(1):71–82

    Article  Google Scholar 

  • Souri Z, Khanna K, Karimi N, Ahmad P (2021) Silicon and plants: current knowledge and future prospects. J Plant Growth Regul 40(3):906–925

    Article  CAS  Google Scholar 

  • Sytar O, Kumari P, Yadav S, Brestic M, Rastogi A (2019) Phytohormone Priming: Regulator for Heavy Metal Stress in Plants. J Plant Growth Regul 38(2):739–752. doi:https://doi.org/10.1007/s00344-018-9886-8

    Article  CAS  Google Scholar 

  • Thakral V, Bhat JA, Kumar N, Myaka B, Sudhakaran S, Patil G, Sonah H, Shivaraj S, Deshmukh R (2021) Role of silicon under contrasting biotic and abiotic stress conditions provides benefits for climate smart cropping. Environ Exp Bot 189:104545

    Article  CAS  Google Scholar 

  • Thorne SJ, Hartley SE, Maathuis FJ (2021) The effect of silicon on osmotic and drought stress tolerance in wheat landraces. Plants 10(4):814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tissier A (2012) Glandular trichomes: what comes after expressed sequence tags? Plant J 70(1):51–68

    Article  CAS  PubMed  Google Scholar 

  • Tozzi ES, Easlon HM, Richards JH (2013) Interactive effects of water, light and heat stress on photosynthesis in F remont cottonwood. Plant Cell Environ 36(8):1423–1434

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Singh S, Singh S, Mishra S, Chauhan DK, Dubey NK (2015) Micronutrients and their diverse role in agricultural crops: advances and future prospective. Acta Physiol Plant 37(7):139. doi:https://doi.org/10.1007/s11738-015-1870-3

    Article  CAS  Google Scholar 

  • Tripathi DK, Vishwakarma K, Singh VP, Prakash V, Sharma S, Muneer S, Nikolic M, Deshmukh R, Vaculík M, Corpas FJ (2020) Silicon crosstalk with reactive oxygen species, phytohormones and other signaling molecules.Journal of Hazardous Materials:124820

  • Tuna AL, Kaya C, Higgs D, Murillo-Amador B, Aydemir S, Girgin AR (2008) Silicon improves salinity tolerance in wheat plants. Environ Exp Bot 62(1):10–16

    Article  CAS  Google Scholar 

  • Ur Rahman S, Xuebin Q, Zhao Z, Du Z, Imtiaz M, Mehmood F, Hongfei L, Hussain B, Ashraf MN (2021) Alleviatory effects of Silicon on the morphology, physiology, and antioxidative mechanisms of wheat (Triticum aestivum L.) roots under cadmium stress in acidic nutrient solutions. Sci Rep 11(1):1–12

    Google Scholar 

  • Van Bockhaven J, Steppe K, Bauweraerts I, Kikuchi S, Asano T, Höfte M, De Vleesschauwer D (2015) Primary metabolism plays a central role in moulding silicon-inducible brown spot resistance in rice. Mol Plant Pathol 16(8):811–824. doi:https://doi.org/10.1111/mpp.12236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Poecke RM, Dicke M (2002) Induced parasitoid attraction by Arabidopsis thaliana: involvement of the octadecanoid and the salicylic acid pathway. J Exp Bot 53(375):1793–1799

    Article  PubMed  Google Scholar 

  • Vander Linden C, Delvaux B (2019) The weathering stage of tropical soils affects the soil-plant cycle of silicon, but depending on land use. Geoderma 351:209–220

    Article  CAS  Google Scholar 

  • Vigani G, Costa A (2019) Harnessing the new emerging imaging technologies to uncover the role of Ca2 + signalling in plant nutrient homeostasis. Plant Cell Environ 42(10):2885–2901

    Article  CAS  PubMed  Google Scholar 

  • Vivancos J, Labbé C, Menzies JG, Bélanger RR (2015a) Silicon-mediated resistance of Arabidopsis against powdery mildew involves mechanisms other than the salicylic acid (SA)-dependent defence pathway. Mol Plant Pathol 16(6):572–582. doi:https://doi.org/10.1111/mpp.12213

    Article  CAS  PubMed  Google Scholar 

  • Vivancos J, Labbé C, Menzies JG, Bélanger RR (2015b) Silicon-mediated resistance of A rabidopsis against powdery mildew involves mechanisms other than the salicylic acid (SA)‐dependent defence pathway. Mol Plant Pathol 16(6):572–582

    Article  CAS  PubMed  Google Scholar 

  • Wade RN, Donaldson SM, Karley AJ, Johnson SN, Hartley SE (2022) Uptake of silicon in barley under contrasting drought regimes.Plant and Soil:1–13

  • Wang J, Xue R, Ju X, Yan H, Gao Z, Esmail Abdalla Elzaki M, Hu L, Zeng R, Song Y (2020) Silicon-mediated multiple interactions: Simultaneous induction of rice defense and inhibition of larval performance and insecticide tolerance of Chilo suppressalis by sodium silicate. Ecol Evol 10(11):4816–4827

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Ning C, Pan T, Cai K (2022) Role of Silica Nanoparticles in Abiotic and Biotic Stress Tolerance in Plants: A Review. Int J Mol Sci 23(4):1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Wang R, Mur LAJ, Ruan J, Shen Q, Guo S (2021a) Functions of silicon in plant drought stress responses. Hortic Res 8(1):1–13

    Article  Google Scholar 

  • Wang M, Wang R, Mur LAJ, Ruan J, Shen Q, Guo S (2021b) Functions of silicon in plant drought stress responses.Horticulture Research8

  • Wang XS, Han JG (2007) Effects of NaCl and silicon on ion distribution in the roots, shoots and leaves of two alfalfa cultivars with different salt tolerance. Soil Sci Plant Nutr 53(3):278–285

    Article  CAS  Google Scholar 

  • Wang Y, Mopper S, Hasenstein KH (2001) Effects of Salinity on Endogenous Aba, Iaa, Ja, and Sa in Iris hexagona. J Chem Ecol 27(2):327–342. doi:https://doi.org/10.1023/A:1005632506230

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Stass A, Horst WJ (2004) Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize. Plant Physiol 136(3):3762–3770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Baldwin IT (2010) New insights into plant responses to the attack from insect herbivores. Annu Rev Genet 44:1–24. doi:https://doi.org/10.1146/annurev-genet-102209-163500

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Geilfus C-M, Pitann B, Mühling K-H (2016) Silicon-enhanced oxalate exudation contributes to alleviation of cadmium toxicity in wheat. Environ Exp Bot 131:10–18

    Article  CAS  Google Scholar 

  • Wu J, Guo J, Hu Y, Gong H (2015) Distinct physiological responses of tomato and cucumber plants in silicon-mediated alleviation of cadmium stress. Front Plant Sci 6:453

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamaji N, Ma JF (2011) Further characterization of a rice silicon efflux transporter, Lsi2. Soil Sci Plant Nutr 57(2):259–264

    Article  CAS  Google Scholar 

  • Ye M, Song Y, Long J, Wang R, Baerson SR, Pan Z, Zhu-Salzman K, Xie J, Cai K, Luo S (2013a) Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon. Proceedings of the National Academy of Sciences 110 (38):E3631-E3639

  • Ye M, Song Y, Long J, Wang R, Baerson SR, Pan Z, Zhu-Salzman K, Xie J, Cai K, Luo S, Zeng R (2013b) Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon. Proceedings of the National Academy of Sciences 110 (38):E3631-E3639. doi:https://doi.org/10.1073/pnas.1305848110

  • Yoshida S, Ohnishi Y, Kitagishi K (1962) Histochemistry of silicon in rice plant: III. The presence of cuticle-silica double layer in the epidermal tissue. Soil Sci Plant Nutr 8(2):1–5

    Article  Google Scholar 

  • Zajaczkowska A, Korzeniowska J, Sienkiewicz-Cholewa U (2020) Effect of Soil and Foliar Silicon Application on the Reduction of Zinc Toxicity in Wheat. Agriculture 10(11):522

    Article  CAS  Google Scholar 

  • Zhang C, Wang L, Nie Q, Zhang W, Zhang F (2008) Long-term effects of exogenous silicon on cadmium translocation and toxicity in rice (Oryza sativa L.). Environ Exp Bot 62(3):300–307

    Article  CAS  Google Scholar 

  • Zhang S, Geng L, Fan L, Zhang M, Zhao Q, Xue P, Liu W (2020) Spraying silicon to decrease inorganic arsenic accumulation in rice grain from arsenic-contaminated paddy soil. Sci Total Environ 704:135239

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Liang Y, Zhao X, Jin X, Hou L, Shi Y, Ahammed GJ (2019) Silicon compensates phosphorus deficit-induced growth inhibition by improving photosynthetic capacity, antioxidant potential, and nutrient homeostasis in tomato. Agronomy 9(11):733

    Article  CAS  Google Scholar 

  • Zhu Y-X, Gong H-J, Yin J-L (2019) Role of silicon in mediating salt tolerance in plants: a review. Plants 8(6):147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zia-ur-Rehman M, Sabir M, Rizwan M, Saifullah Ahmed H, Nadeem M (2015) Remediating cadmium-contaminated soils by growing grain crops using inorganic amendments. Soil Remediation and Plants: Prospects and Challenges; Hakeem, KR, Sabir, M, Ozturk, M, Murmet, A, Eds:367–396

  • Zhu Y-X, Gong H-J, Yin J-L (2019) Role of silicon in mediating salt tolerance in plants: a review. Plants 8 (6):147

  • Zia-ur-Rehman M, Sabir M, Rizwan M, Saifullah Ahmed H, Nadeem M (2015) Remediating cadmium-contaminated soils by growing grain crops using inorganic amendments. Soil Remediation and Plants: Prospects and Challenges; Hakeem, KR, Sabir, M, Ozturk, M, Murmet, A, Eds:367–396

Download references

Acknowledgements

We acknowledge the State’s Key Project of Research and Development Plan (2019YFC0507702), the Gansu Provincial Science and Technology Major Projects (19ZD2NA002), Chinese National Natural Science Foundation (31971751), the open projects of Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau (2020-ZJ-Y03), Foreign Youth Talent Project (QN2022175009L), and the Fundamental Research Fund for the Central Universities (lzujbky-2021-ct21) for providing funds for this work. Furthermore, we also acknowledge the online webtool “Biorender” to make significant figures to interpret the ideas and findings of the presented study in pictorial form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wengang Xie.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Additional information

Communicated by M Naeem.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, I., Awan, S.A., Rizwan, M. et al. Silicon: an essential element for plant nutrition and phytohormones signaling mechanism under stressful conditions. Plant Growth Regul 100, 301–319 (2023). https://doi.org/10.1007/s10725-022-00872-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-022-00872-3

Keywords

Navigation