Skip to main content
Log in

Environmental cues or conspecific attraction as causes for egg mass aggregation in hydrobiosid caddisflies

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The distribution of egg masses throughout the environment can strongly influence the population dynamics of aquatic insects. Many species lay eggs in aggregations and most eggs will subsequently hatch from only a few locations—knowing how and why these aggregations arise is therefore needed to understand the population dynamics of these species. The hydrobiosid caddisfly Ulmerochorema rubiconum lays eggs in large aggregations on the undersides of emergent rocks in streams. Our aim was to test whether females oviposit in response to conspecific egg masses or the environmental characteristics of rocks by manipulating the number and age of egg masses initially present on rocks and monitoring the accumulation of new masses. Our first experiment used rocks that had recently been used for oviposition and initial egg masses encompassed a range of ages; our second used rocks with no history of oviposition and initial masses of uniform age. Females did not respond to conspecific eggs of any age, as removing initial egg masses had no impact on the number of new masses laid in either experiment. There was a strong positive relationship between the number of initial and new masses, regardless of whether initial egg masses were removed, at the scale of whole rocks and for rock microhabitats. The results suggest that females select oviposition sites based primarily on physical characteristics of emergent rocks. We demonstrate for the first time that the spatial arrangement of egg masses may be consistent and predictable through time, with females showing a high degree of fidelity for particular rocks and microhabitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bentley, M. D. & J. F. Day, 1989. Chemical ecology and behavioral aspects of mosquito oviposition. Annual Review of Entomology 34: 401–421.

    Article  CAS  PubMed  Google Scholar 

  • Bernardo, J., 1996. Maternal effects in animal ecology. American Zoologist 36: 83–105.

    Google Scholar 

  • Bjostad, L. B., S. K. Jewett & D. L. Brigham, 1996. Sex pheromone of caddisfly Hesperophylax occidentalis (Banks) (Trichoptera: Limnephilidae). Journal of Chemical Ecology 22: 103–121.

    Article  CAS  Google Scholar 

  • Clements, A. N., 1999. The Biology of Mosquitoes. Volume 2: Sensory Reception and Behaviour. CABI, Wallingford.

    Google Scholar 

  • Coupland, J. B., 1991. Oviposition response of Simulium reptans (Diptera: Simuliidae) to the presence of conspecific eggs. Ecological Entomology 16: 11–15.

    Article  Google Scholar 

  • Doody, L. S., S. Freedberg & J. S. Keogh, 2009. Communal egg-laying in reptiles and amphibians: evolutionary patterns and hypotheses. Quarterly Review of Biology 84: 229–252.

    Article  PubMed  Google Scholar 

  • Encalada, A. C. & B. L. Peckarsky, 2006. Selective oviposition of the mayfly Baetis bicaudatus. Oecologia 148: 526–537.

    Article  PubMed  Google Scholar 

  • Encalada, A. C. & B. L. Peckarsky, 2007. A comparative study of the costs of alternative mayfly oviposition behaviours. Behavioural Ecology and Sociobiology 61: 1437–1448.

    Article  Google Scholar 

  • Fincke OM (1986) Underwater oviposition favors male vigilance and female multiple mating in a damselfly (Odonata: Coenagrionidae). Behav Ecol Sociobiol 18:405–412

    Article  Google Scholar 

  • Floater, G. J., 2001. Habitat complexity, spatial interference, and “minimum risk distribution”: a framework for population stability. Ecological Monographs 71: 447–468.

    Google Scholar 

  • Gibbons, D. W. & D. Pain, 1992. The influence of river flow rate on the breeding behaviour of Calopteryx damselflies. Journal of Animal Ecology 61: 281–289.

    Google Scholar 

  • Golini, V. I. & D. M. Davies, 1987. Oviposition of black flies. In Kim, K. C. & R. W. Merritt (eds), Black Flies. Pennsylvania State University, University Park, PA: 261–275.

    Google Scholar 

  • Hinton, H. E., 1981. Biology of Insect Eggs. Pergamon Press, Oxford.

    Google Scholar 

  • Hoffmann, A. & V. H. Resh, 2003. Oviposition in three species of limnephiloid caddisflies (Trichoptera): hierarchical influences in site selection. Freshwater Biology 48: 1064–1077.

    Article  Google Scholar 

  • Horváth, G. & G. Kriska, 2008. Polarization vision in aquatic insects and ecological traps for polarotactic insects. In Lancaster, J. & R. A. Briers (eds), Aquatic Insects: Challenges to Populations. CAB International, Wallingford: 204–229.

    Chapter  Google Scholar 

  • Horváth, G. & D. Varjú, 2004. Polarized Light in Animal Vision. Springer-Verlag, Berlin.

    Google Scholar 

  • Kirk, R. E., 1995. Experimental Design: Proceedures for the Behavioral Sciences, 3rd ed. Brooks/Cole Publishing Co, Pacific Grove, USA.

    Google Scholar 

  • Lancaster, J., B. J. Downes & P. Reich, 2003. Linking landscape patterns of resource distribution with models of aggregation in ovipositing stream insects. Journal of Animal Ecology 72: 969–978.

    Article  Google Scholar 

  • Lancaster, J., B. J. Downes & A. Arnold, 2010a. Oviposition site selectivity in some stream-dwelling caddisflies. Hydrobiologia 652: 165–178.

    Article  Google Scholar 

  • Lancaster, J., B. J. Downes & A. Arnold, 2010b. Environmental constraints on oviposition may limit density of a stream insect at multiple scales. Oecologia 163: 373–384.

    Article  PubMed  Google Scholar 

  • Löfstedt, C., B. S. Hansson, E. Petersson, P. Valeur & A. Richards, 1994. Pheromonal secretions from glands on the 5th abdominal sternite of hydropsychid and rhyacophilid caddisflies (Trichoptera). Journal of Chemical Ecology 20: 153–170.

    Article  Google Scholar 

  • Löfstedt, C., J. Bergmann, W. Francke, E. Jirle, B. S. Hansson & V. D. Ivanov, 2008. Identification of a sex pheromone produced by sternal glands in females of the caddisfly Molanna angustata Curtis. Journal of Chemical Ecology 34: 220–228.

    Article  PubMed  Google Scholar 

  • Markow, T. A. & P. O’Grady, 2008. Reproductive ecology of Drosophila. Functional Ecology 22: 747–759.

    Article  Google Scholar 

  • McCall, P. J., 1995. Oviposition aggregation pheromone in the Simulium damnosum complex. Medical and Veterinary Entomology 9: 101–108.

    Article  CAS  PubMed  Google Scholar 

  • McCall, P. J., 2002. Chemoecology of oviposition in insects of medical and veterinary importance. In Hilker, M. & T. Meiner (eds), Chemoecology of Insect Eggs and Egg Deposition. Blackwell Publishing, Oxford: 265–289.

    Google Scholar 

  • McCall, P. J., A. J. Trees, J. F. Walsh & D. H. Molyneux, 1994. Aggregated oviposition in the Simulium damnosum complex is mediated by eggs in a laboratory assay. Medical and Veterinary Entomology 8: 76–80.

    Article  CAS  PubMed  Google Scholar 

  • McCall, P. J., R. R. Heath, B. D. Dueben & M. D. Wilson, 1997. Oviposition pheromone in the Simulium damnosum complex: biological activity of chemical fractions from gravid ovaries. Physiological Entomology 22: 224–230.

    Article  CAS  Google Scholar 

  • McMillan, V. E., 2000a. Aggregating behaviour during oviposition in the dragonfly Sympetrum vicinum (Hagen) (Odonata: Libellulidae). American Naturalist 144: 11–18.

    Article  Google Scholar 

  • McMillan, V. E., 2000b. Postcopulatory behaviour in Libellula pulchella Drury (Odonata:Libellulidae) and female tactics for avoiding male interference with oviposition. Journal of Insect Biology 13: 573–583.

    Article  Google Scholar 

  • Muirhead-Thomson, R. C., 1956. Communal oviposition in Simulium damnosum Theobald (Diptera, Simuliidae). Nature 178: 1297–1299.

    Article  Google Scholar 

  • Peckarsky, B. L., B. W. Taylor & C. C. Caudill, 2000. Hydrologic and behavioral constraints on oviposition of stream insects: implications for adult dispersal. Oecologia 125: 186–200.

    Article  Google Scholar 

  • Reich, P., 2004. Patterns of composition and abundance in macroinvertebrate egg masses from temperate Australian streams. Marine and Freshwater Research 55: 39–56.

    Article  Google Scholar 

  • Reich, P. & B. J. Downes, 2003a. Experimental evidence for physical cues involved in oviposition site selection of lotic hydrobiosid caddisflies. Oecologia 136: 465–475.

    Article  PubMed  Google Scholar 

  • Reich, P. & B. J. Downes, 2003b. The distribution of aquatic invertebrate egg masses in relation to physical characteristics of oviposition sites at two Victorian upland streams. Freshwater Biology 48: 1497–1513.

    Article  Google Scholar 

  • Reich, P. & B. J. Downes, 2004. Relating larval distributions to patterns of oviposition: evidence from lotic hydrobiosid caddisflies. Freshwater Biology 49: 1423–1436.

    Article  Google Scholar 

  • Resh, V. H. & J. R. Wood, 1985. Site of sex pheromone production in three species of Trichoptera. Aquatic Insects 7: 65–71.

    Article  Google Scholar 

  • Siva-Jothy, M. T., D. W. Gibbons & D. Pain, 1995. Female oviposition-site preference and egg hatching success in the damselfly Calopteryx splendens xanthosstoma. Behavioral Ecology and Sociobiology 37: 39–44.

    Article  Google Scholar 

  • Taylor, L. R., 1984. Assessing and interpreting the spatial distributions of insect populations. Annual Review of Entomology 29: 321–357.

    Article  Google Scholar 

  • Tokeshi, M. & K. Reinhardt, 1996. Reproductive behaviour in Chironomus anthracinus (Diptera: Culicidae), with a consideration of the evolution of swarming. Journal of Zoology 240: 103–112.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by a Discovery Grant from the Australian Research Council (DP0344236) awarded to BJD and JL. We thank Joey Boothby and Karin Reich for help in the field and two anonymous referees for their comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Hale.

Additional information

Handling editor: D. Dudgeon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reich, P., Hale, R., Downes, B.J. et al. Environmental cues or conspecific attraction as causes for egg mass aggregation in hydrobiosid caddisflies. Hydrobiologia 661, 351–362 (2011). https://doi.org/10.1007/s10750-010-0543-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0543-x

Keywords

Navigation