Skip to main content

Advertisement

Log in

Variation of Clitellata (Annelida) assemblages related to water saturation in groundwater-dependent wetlands

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Aquatic invertebrates of groundwater-dependent wetlands can be sensitive to a drop in the groundwater table, which is considered one of the possible impacts of climate change. We investigated whether aquatic clitellate species are able to dwell in waterlogged substrates without surface water, in 27 spring fens studied across the Western Carpathians. A total of 78 clitellate species were recorded in pairs of samples from aquatic and semi-aquatic habitats. Semi-aquatic habitats had 27 species in common with aquatic habitats, but algal and fungal feeders were less frequent and abundant, and predatory leeches and Haplotaxis gordioides completely lacking. Terrestrial enchytraeid species enriched the semi-aquatic assemblages. The main change in clitellate composition was controlled by total organic carbon. The importance of further variables, however, differed between aquatic and semi-aquatic sites. Further analyses of semi-aquatic sites showed that the distribution of primarily aquatic species was mainly driven by physical and chemical variables, while that of soil dwellers was driven by depth. Except Tubifex tubifex and Nais communis, all aquatic species preferred the uppermost layer. Results indicate that, during extreme droughts, when aquatic habitats cease to exist, some aquatic clitellates can persist in the waterlogged substrate, while some aquatic specialists may face the risk of local extinction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barquín, J. & M. Scarsbrook, 2008. Management and conservation strategies for coldwater springs. Aquatic Conservation Marine and Freshwater Ecosystems 18: 580–591.

    Article  Google Scholar 

  • Bertrand, G., N. Goldscheider, J.-M. Gobat & D. Hunkeler, 2012. Review: from multi-scale conceptualization to a classification system for inland groundwater-dependent ecosystems. Hydrogeology Journal 20: 5–25.

    Article  Google Scholar 

  • Bojková, J., J. Schenková, M. Horsák & M. Hájek, 2011. Species richness and composition patterns of clitellate (Annelida) assemblages in the treeless spring fens: the effect of water chemistry and substrate. Hydrobiologia 677: 159–171.

    Article  CAS  Google Scholar 

  • Briones, M. J. I., P. Ineson & T. G. Piearce, 1997. Effects of climate change on soil fauna; responses of enchytraeids, Diptera larvae and tardigrades in a transplant experiment. Applied Soil Ecology 6: 117–134.

    Article  Google Scholar 

  • Cantonati, M., L. Füreder, R. Gerecke, I. Jüttner & E. J. Cox, 2012. Crenic habitats, hotspots for freshwater biodiversity conservation: toward an understanding of their ecology. Freshwater Science 31: 463–480.

    Article  Google Scholar 

  • Cragg, J. B., 1961. Some aspects of the ecology of moorland animals. Journal of Ecology 49: 477–506.

    Article  Google Scholar 

  • Dawson, T. P., P. M. Berry & E. Kampa, 2003. Climate change impacts on freshwater wetland habitats. Journal for Nature Conservation 11: 25–30.

    Article  Google Scholar 

  • Dumnicka, E., 2000. Studies on Oligochaeta taxocens in streams, interstitial and cave waters of southern Poland with remarks on Aphanoneura and Polychaeta distribution. Acta Zoologica Cracoviensia 43: 339–392.

    Google Scholar 

  • Dumnicka, E., 2001. Some remarks on the origin of stygobiontic oligochaetes. Mémoires de Biospéleologie 28: 39–45.

    Google Scholar 

  • Erman, D. C. & N. A. Erman, 1975. Macroinvertebrate composition and production in some Sierra Nevada minerotrophic peatlands. Ecology 56: 591–603.

    Article  Google Scholar 

  • Erséus, C., M. J. Wetzel & L. Gustavsson, 2008. ICZN rules—a farewell to Tubificidae (Annelida, Clitellata). Zootaxa 1744: 66–68.

    Article  Google Scholar 

  • ESRI, 2003. ArcGIS 8.3. Environmental Systems Research Institute, Redlands, CA, USA, http://www.esri.com.

  • Giere, O., 1993. Meiobenthology, the Microscopic Fauna in Aquatic Sediments. Springer, Berlin Heidelberg.

    Google Scholar 

  • Glazier, D. S., 1991. The fauna of North American temperate cold springs: patterns and hypotheses. Freshwater Biology 26: 527–542.

    Article  Google Scholar 

  • Gower, J. C., 1975. Generalized procrustes analysis. Psychometrika 40: 33–51.

    Article  Google Scholar 

  • Graefe, U. & R. M. Schmelz, 1999. Indicator values, strategy types and life forms of terrestrial Enchytraeidae and other microannelids. In Schmelz R. M. & Sühlo K. (eds), Proceedings of the 3rd International Symposium on Enchytraeidae, Osnabrück, Germany: 3–4 July 1998, Universitätsverlag Rasch, Osnabrück (Newsletter on Enchytraeidae 6): 59–67.

  • Green, T. R., M. Taniguchi, H. Kooi, J. J. Gurdak, D. M. Allen, K. M. Hiscock, H. Treidel & A. Aureli, 2011. Beneath the surface of global change: impacts of climate change on groundwater. Journal of Hydrology 405: 532–560.

    Article  Google Scholar 

  • Hájek, M. & P. Hekera, 2004. Can seasonal variation in fen water chemistry influence the reliability of vegetation-environment analyses? Preslia 76: 1–14.

    Google Scholar 

  • Hájek, M., P. Hekera & P. Hájková, 2002. Spring fen vegetation and water chemistry in the Western Carpathian flysch zone. Folia Geobotanica 37: 205–224.

    Article  Google Scholar 

  • Hájek, M., P. Hájková, K. Rybníček & P. Hekera, 2005. Present vegetation of spring fens and its relation to water chemistry. In Poulíčková, A., M. Hájek & K. Rybníček (eds), Ecology and Palaeoecology of Spring Fens of the West Carpathians. Palacký University, Olomouc: 69–96.

    Google Scholar 

  • Hájek, M., M. Horsák, P. Hájková & D. Dítě, 2006. Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. Perspectives in Plant Ecology, Evolution and Systematics 8: 97–114.

    Article  Google Scholar 

  • Hannigan, E. & M. Kelly-Quinn, 2012. Composition and structure of macroinvertebrate communities in contrasting open-water habitats in Irish peatlands: implications for biodiversity conservation. Hydrobiologia 692: 19–28.

    Article  CAS  Google Scholar 

  • Healy, B., 1987. The depth distribution of Oligochaeta in an Irish quaking marsh. Hydrobiologia 155: 235–247.

    Article  Google Scholar 

  • Healy, B. & T. Bolger, 1984. The occurrence of species of semi-aquatic Enchytraeidae (Oligochaeta) in Ireland. Hydrobiologia 115: 159–170.

    Article  Google Scholar 

  • Horsák, M., V. Rádková, J. Bojková, V. Křoupalová, J. Schenková, V. Syrovátka & J. Zajacová, 2015. Drivers of aquatic macroinvertebrate richness in spring fens in relation to habitat specialization and dispersal mode. Journal of Biogeography 42: 2112–2121.

    Article  Google Scholar 

  • Horsák, M., V. Polášková, M. Zhai, J. Bojková, V. Syrovátka, V. Šorfová, J. Schenková, M. Polášek, T. Peterka & M. Hájek, 2018. Spring-fen habitat islands in a warming climate: partitioning the effects of mesoclimate air and water temperature on aquatic and terrestrial biota. Science of the Total Environment 634: 355–365.

    Article  PubMed  CAS  Google Scholar 

  • Hrabě, S., 1942. Poznámky o zvířeně ze studní a pramenů na Slovensku. Sborník Přírodovědeckého klubu v Brně 24: 23–30.

    Google Scholar 

  • IPCC, 2014. Climate change 2014—impacts, adaptation and vulnerability: regional aspects. Cambridge University Press, New York.

    Google Scholar 

  • Jackson, D. A., 1995. PROTEST: a PROcrustean randomization TEST of community environment concordance. Écoscience 2: 297–303.

    Article  Google Scholar 

  • Juget, J. & M. Lafont, 1994. Theoretical habitat templets, species traits, and species richness: aquatic oligochaetes in the Upper Rhône River and its floodplain. Freshwater Biology 31: 327–340.

    Article  Google Scholar 

  • Kløve, B., P. Ala-Aho, G. Bertrand, J. J. Gurdak, H. Kupfersberger, J. Kværner, T. Muotka, H. Mykrä, E. Preda, P. Rossi, C. B. Uvo, E. Velasco & M. Pulido-Velazquez, 2014. Climate change impacts on groundwater and dependent ecosystems. Journal of Hydrology 518: 250–266.

    Article  Google Scholar 

  • Košel, V., 2001. Hirudinológia pre hydrobiológov v praxi. In Makovinská, J. & L. Tóthová (eds), Zborník z hydrobiologického kurzu 2001. Rajecké Teplice: 37–54.

  • Křoupalová, V., J. Bojková, J. Schenková, P. Pařil & M. Horsák, 2011. Small-scale distribution of aquatic macroinvertebrates in two spring fens with different groundwater chemistry. International Review of Hydrobiology 96: 235–256.

    Article  CAS  Google Scholar 

  • Laiho, R., N. Silvan, H. Cárcamo & H. Vasander, 2001. Effects of water level and nutrients on spatial distribution of soil mesofauna in peatlands drained for forestry in Finland. Applied Soil Ecology 16: 1–9.

    Article  Google Scholar 

  • Learner, M. A., G. Lochhead & B. D. Hughes, 1978. A review of the biology of British Naididae (Oligochaeta) with emphasis on the lotic environment. Freshwater Biology 8: 357–375.

    Article  Google Scholar 

  • Martínez-Ansemil, E. & R. Collado, 1996. Distribution patterns of aquatic oligochaetes inhabiting watercourses in the Northwestern Iberian Peninsula. Hydrobiologia 334: 73–83.

    Article  Google Scholar 

  • Martinsson, S., E. Rota & C. Erséus, 2015a. Revision of Cognettia (Clitellata, Enchytraeidae): re-estabilishment of Chamaedrilus and description of cryptic species in the sphagnetorum complex. Systematics and Biodiversity 13: 257–277.

    Article  Google Scholar 

  • Martinsson, S., E. Rota & C. Erséus, 2015b. On the identity of Chamaedrilus glandulosus (Michaelsen, 1881) (Clitellata, Enchytraeidae), with the description of a new species. Zookeys 501: 1–14.

    Article  Google Scholar 

  • Neubert, E. & H. Nesemann, 1999. Annelida, Clitellata; Branchiobdellida, Acanthobdellea, Hirudinea. Spektrum Akademischer Verlag, Berlin.

    Google Scholar 

  • Nijboer, R. C., M. J. Wetzel & P. F. M. Verdonschot, 2004. Diversity and distribution of Tubificidae, Naididae, and Lumbriculidae (Annelida: Oligochaeta) in the Netherlands: an evaluation of 20 years of monitoring data. Hydrobiologia 520: 127–141.

    Article  Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. Henry, H. Stevens, E. Szoecs & H. Wagner, 2017. vegan: Community ecology package. 2013. R-package version 2.4–3. Available at: http://CRAN.R-project.org/package=vegan.

  • Omesová, M. & J. Helešic, 2004. On the processing of freeze-core samples with notes on the impact of sample size. Scripta Facultatis Scientiarum Naturalium Universitatis Masarykianae Brunensis. Biology. Studies in Hydrobiology 29: 59–66.

    Google Scholar 

  • Pižl, V., 2002. Žížaly České republiky. Earthworms of the Czech Republic, Sborník přírodovědeckého klubu v Uherském Hradišti, Supp: 9.

    Google Scholar 

  • Plum, N. M. & J. Filser, 2005. Floods and drought: Response of earthworms and potworms (Oligochaeta: Lumbricidae, Enchytraeidae) to hydrological extremes in wet grassland. Pedobiologia 49: 443–453.

    Article  Google Scholar 

  • Prendergast-Miller, M., V. Standen, I. D. Leith & L. J. Sheppard, 2009. Response of enchytraeid worm populations to different forms of nitrogen (ammonia, ammonium, and nitrate) deposition. Soil Organisms 81: 225–236.

    Google Scholar 

  • R Development Core Team, 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Rádková, V., V. Syrovátka, J. Bojková, J. Schenková, V. Křoupalová & M. Horsák, 2014. The importance of species replacement and richness differences in small-scale diversity patterns of aquatic macroinvertebrates in spring fens. Limnologica 47: 52–61.

    Article  Google Scholar 

  • Richards, K. S., 1977. Structure and function in the oligochaete epidermis (Annelida). Symposia of the Zoological Society of London 39: 171–193.

    CAS  Google Scholar 

  • Römbke, J., J.-P. Sousa, T. Schouten & F. Riepert, 2006. Monitoring of soil organisms: a set of standardized field methods proposed by ISO. European Journal of Soil Biology 42: 61–64.

    Article  Google Scholar 

  • Sawyer, R. T., 1986. Leech Biology and Behaviour, Vol. II. Clarendon Press, Oxford.

    Google Scholar 

  • Schenková, J., M. Bílková & M. Horsák, 2016. The response of Clitellata (Annelida) to environmental gradients in spring fens. Limnologica 57: 73–82.

    Article  CAS  Google Scholar 

  • Schmelz, R. M. & R. Collado, 2010. A guide to European terrestrial and freshwater species of Enchytraeidae (Oligochaeta). Soil Organisms 82: 1–176.

    Google Scholar 

  • Schmelz, R. M., R. Collado & J. Römbke, 2015. Cognettia Nielsen & Christensen, 1959 (Annelida, Oligochaeta, enchytraeidae): proposed precedence over Euenchytraeus Bretscher, 1906 and Chamaedrilus Friend, 1913. The Bulletin of Zoological Nomenclature 72: 186–192.

    Article  Google Scholar 

  • Schwank, P., 1981. Turbellarien, Oligochaeten und Archianneliden des Breitenbachs und anderer oberhessischer Mittelgebirgsbäche. II. Die Systematik und Autökologie der einzelnen Arten. Schlitzer Produktionsbiologische Studien (43-2). Archiv für Hydrobiologie, Supplement 62: 86–147.

    Google Scholar 

  • Seys, J., M. Vincx & P. Meire, 1999. Spatial distribution of oligochaetes (Clitellata) in the tidal freshwater and brackish parts of the Schelde estuary (Belgium). Hydrobiologia 406: 119–132.

    Article  Google Scholar 

  • Silvan, N., R. Laiho & H. Vasander, 2000. Changes in mesofauna abundance in peat soils drained for forestry. Forest Ecology and Management 133: 127–133.

    Article  Google Scholar 

  • Smith, M. E. & J. R. Kaster, 1986. Feeding habits and dietary overlap of Naididae (Oligochaeta) from a bog stream. Hydrobiologia 137: 193–201.

    Article  Google Scholar 

  • Springett, J. A., J. E. Brittain & B. P. Springett, 1970. Vertical movement of Enchytraeidae (Oligochaeta) in moorland soils. Oikos 21: 16–21.

    Article  Google Scholar 

  • Standen, V., 1982. Associations of Enchytraeidae (Oligochaeta) in experimentally fertilized grasslands. Journal of Animal Ecology 51: 501–522.

    Article  Google Scholar 

  • Svendsen, J. A., 1957a. The distribution of Lumbricidae in an area of Pennine moorland. Journal of Animal Ecology 26: 411–421.

    Article  Google Scholar 

  • Svendsen, J. A., 1957b. The behaviour of lumbricids under moorland conditions. Journal of Animal Ecology 26: 423–439.

    Article  Google Scholar 

  • Terhivuo, J. & A. Saura, 2006. Dispersal and clonal diversity of North-European parthenogenetic earthworms. Biological Invasions 8: 1205–1218.

    Article  Google Scholar 

  • Timm, T., 2009. A guide to the freshwater Oligochaeta and Polychaeta of Northern and Central Europe. Lauterbornia 66: 1–235.

    Google Scholar 

  • Tolasz, R., 2007. Climate Atlas of Czechia. Český hydrometeorologický ústav Olomouc. Univerzita Palackého v Olomouci, Olomouc.

  • van Asselen, S., P. H. Verburg, J. E. Vermaat & J. H. Janse, 2013. Drivers of wetland conversion: a global meta-analysis. PLoS ONE 8(11): e81292.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Duinen, G. A., T. Timm, A. J. P. Smolders, A. M. T. Brock & W. C. E. P. Verberk, 2006. Differential response of aquatic oligochaete species to increased nutrient availability—a comparative study between Estonian and Dutch raised bogs. Hydrobiologia 564: 143–155.

    Article  Google Scholar 

  • von Fumetti, S., F. W. Wigger & P. Nagel, 2017. Temperature variability and its influence on macroinvertebrate assemblages of alpine springs. Ecohydrology 10: 1–9.

    Google Scholar 

  • Verdonschot, P. F. M., 2007. Spatial and temporal re-distribution of Naididae (tubificoid naidids and naidids s.str., Annelida, Clitellata) in Europe due to climate change: a review based on observational data. Acta Hydrobiologica Sinica 31: 116–138.

    Google Scholar 

  • Vu, V. Q., 2011. Ggbiplot: a ggplot2 based biplot. R Package. Version: 0.55. Available at: https://github.com/vqv/ggbiplot.

Download references

Acknowledgements

We would like to thank Vít Syrovátka and Marek Polášek for their help with the visualization of the results, and Ondřej Hájek for the preparation of the map. The study was supported by research grants of the Czech Science Foundation (GA15-15548S and GA16-03881S) and by the institutional support of the Masaryk University for PhD students.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Schenková.

Additional information

Handling editor: Chris Joyce

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schenková, J., Bílková, M., Polášková, V. et al. Variation of Clitellata (Annelida) assemblages related to water saturation in groundwater-dependent wetlands. Hydrobiologia 823, 49–65 (2018). https://doi.org/10.1007/s10750-018-3695-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3695-8

Keywords

Navigation