Skip to main content
Log in

Rotifer adaptation to the unpredictability of the growing season

  • ROTIFERA XV
  • Review Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Sexual reproduction in cyclically parthenogenetic rotifers results in the production of diapausing eggs that tolerate harsh conditions. Theory predicts that the adaptation to environmental unpredictability can occur by the evolution of bet-hedging strategies. When facing unpredictability in the length of rotifer growing season, patterns of diapausing egg production and hatching can disperse risks and act as bet-hedging strategies. Here, we identified the methodologies to test bet-hedging theory and summarized predictions on rotifer diapause traits. We assessed these predictions by reviewing and reanalyzing results from other studies on field and experimentally evolving populations of Brachionus plicatilis from Spanish ponds. These studies include (1) a quantification of the unpredictability in field populations, (2) the measurement of diapause-related traits in laboratory conditions, and (3) genomic data. The view arising is that these rotifers adaptively respond to the unpredictability in their localities. As expected, propensity for sex increased with unpredictability. Hatching fractions of diapausing eggs were intermediate and decreased with unpredictability only in experimentally evolving populations. In field populations, genetic variance in the focal traits did not increase with unpredictability. Finally, environmental features and diapause-related traits are associated to suites of specific genes, although the molecular mechanisms linking these genes with life history are still unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aparici, E., M. J. Carmona & M. Serra, 1998. Sex allocation in haplodiploid cyclical parthenogens with density-dependent proportion of males. The American Naturalist 152: 652–657.

    CAS  PubMed  Google Scholar 

  • Aparici, E., M. J. Carmona & M. Serra, 2001. Intrapopulation variability for mixis initiation in Brachionus plicatilis. Hydrobiologia 446(447): 45–50.

    Google Scholar 

  • Aparici, E., M. J. Carmona & M. Serra, 2002. Evidence for an even sex allocation in haplodiploid cyclical parthenogens. Journal of Evolutionary Biology 15: 65–73.

    Google Scholar 

  • Becks, L. & A. F. Agrawal, 2010. Higher rates of sex evolve in spatially heterogeneous environments. Nature 468: 89–92.

    CAS  PubMed  Google Scholar 

  • Becks, L. & A. F. Agrawal, 2012. The evolution of sex is favoured during adaptation to new environments. PLOS Biology 10: e1001317.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bell, G. & S. Collins, 2008. Adaptation, extinction and global change. Evolutionary Applications 1: 3–16.

    PubMed  PubMed Central  Google Scholar 

  • Blondel, J., J. Aronson, J.-Y. Bodiou & G. Boeuf, 2010. The Mediterranean Region Biological diversity in space and time. Oxford University Press, Oxford.

    Google Scholar 

  • Botero, C. A., F. J. Weissing, J. Wright & D. R. Rubenstein, 2015. Evolutionary tipping points in the capacity to adapt to environmental change. Proceedings of the National Academy of Sciences of the United States of America 112: 184–189.

    CAS  PubMed  Google Scholar 

  • Brown, T. M., 2016. Using light to tell the time of day: sensory coding in the mammalian circadian visual network. Journal of Experimental Biology 2016(219): 1779–1792. https://doi.org/10.1242/jeb.132167.

    Article  Google Scholar 

  • Buoro, M. & S. M. Carlson, 2014. Life history syndromes: integrating dispersal through space and time. Ecology Letters 17: 756–767.

    PubMed  Google Scholar 

  • Campillo, S., E. M. García-Roger, M. J. Carmona & M. Serra, 2009. Selection on life-history traits and genetic population divergence in rotifers. Journal of Evolutionary Biology 22: 2542–2553.

    CAS  PubMed  Google Scholar 

  • Campillo, S., E. M. García-Roger, M. J. Carmona & M. Serra, 2011a. Local adaptation in rotifer populations. Evolutionary Ecology 25: 933–947.

    Google Scholar 

  • Campillo, S., M. Serra, M. J. Carmona & A. Gómez, 2011b. Widespread secondary contact and new glacial refugia in the halophilic rotifer Brachionus plicatilis in the Iberian Peninsula. PLOS ONE 6: e20986.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carmona, M. J., M. Serra & M. R. Miracle, 1994. Effect of population density and genotype on life-history traits in the rotifer Brachionus plicatilis of Müller. Journal of Experimental Marine Biology and Ecology 182: 223–235.

    Google Scholar 

  • Carmona, M. J., A. Gómez & M. Serra, 1995. Mictic patterns of the rotifer Brachionus plicatilis Müller in small ponds. Hydrobiologia 313(314): 365–371.

    Google Scholar 

  • Carmona, M. J., N. Dimas-Flores, E. M. García-Roger & M. Serra, 2009. Selection of low investment in sex in a cyclically parthenogenetic rotifer. Journal of Evolutionary Biology 22: 1975–1983.

    CAS  PubMed  Google Scholar 

  • Childs, D. Z., C. J. E. Metcalf & M. Rees, 2010. Evolutionary bet hedging in the real world: empirical evidence and challenges revealed by plants. Proceedings of the Royal Society B: Biological Sciences 277: 3055–3064.

    PubMed  PubMed Central  Google Scholar 

  • Ciros-Pérez, J., A. Gómez & M. Serra, 2001. On the taxonomy of three sympatric sibling species of the Brachionus plicatilis (Rotifera) complex from Spain, with the description of B. ibericus n. sp. Journal of Plankton Research 23: 1311–1328.

    Google Scholar 

  • Clauss, M. J. & D. L. Venable, 2000. Seed germination in desert annuals: an empirical test of adaptive bet hedging. The American Naturalist 155(2): 168–186.

    CAS  PubMed  Google Scholar 

  • Cohen, D., 1966. Optimizing reproduction in a randomly varying environment. Journal of Theoretical Biology 12: 119–129.

    CAS  PubMed  Google Scholar 

  • Colwell, R. K., 1974. Predictability, constancy, and contingency of periodic phenomena. Ecology 55: 1148–1153.

    Google Scholar 

  • Coop, G., D. Witonsky, A. Di Rienzo & J. K. Pritchard, 2010. Using environmental correlations to identify loci underlying local adaptation. Genetics 185: 1411–1423.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper, W. S. & R. H. Kaplan, 1982. Adaptive “coin-flipping”: a decision-theoretic examination of natural selection for random individual variation. Journal of Theoretical Biology 94: 135–151.

    CAS  PubMed  Google Scholar 

  • De Meester, L., A. Gómez, B. Okamura & K. Schwenk, 2002. The Monopolization Hypothesis and the dispersal—gene flow paradox in aquatic organisms. Acta Oecologica 23: 121–135.

    Google Scholar 

  • Declerck, S. A. J. & S. Papakostas, 2017. Monogonont rotifers as model systems for the study of micro-evolutionary adaptation and its eco-evolutionary implications. Hydrobiologia 796: 131–144.

    Google Scholar 

  • Declerck, S. A. J., A. R. Malo, S. Diehl, D. Waasdorp, K. Lemmen, K. Proios, et al., 2015. Rapid adaptation of herbivore consumers to nutrient limitation: eco-evolutionary feedbacks to population demography and resource control. Ecology Letters 18: 553–562.

    PubMed  Google Scholar 

  • Ellner, S. P., 1997. You bet your life: life-history strategies in fluctuating environments. In Othmer, H., F. R. Adler, M. Lewis & J. C. Dallon (eds), Case studies in mathematical modeling: ecology, physiology and cell biology. Prentice Halle, New Jersey: 3–24.

    Google Scholar 

  • Evans, M. E. K., R. Ferriere, M. J. Kane & D. L. Venable, 2007. Bet hedging via seed banking in desert evening primroses (Oenothera, Onagraceae): demographic evidence from natural populations. The American Naturalist 169: 184–194.

    PubMed  Google Scholar 

  • Foll, M. & O. Gaggiotti, 2008. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180: 977–993.

    PubMed  PubMed Central  Google Scholar 

  • Franch-Gras, L., E. M. García-Roger, M. J. Carmona & M. Serra, 2017a. Quantifying unpredictability: a multiple model approach for Mediterranean ponds by using satellite imagery. PLOS ONE 12: e0187958.

    PubMed  PubMed Central  Google Scholar 

  • Franch-Gras, L., E. M. García-Roger, M. Serra & M. J. Carmona, 2017b. Adaptation in response to environmental unpredictability. Proceedings of the Royal Society B: Biological Sciences 284: 20170427.

    PubMed  PubMed Central  Google Scholar 

  • Franch-Gras, L., C. Hahn, E. M. García-Roger, M. J. Carmona, M. Serra & A. Gómez, 2018. Genomic signatures of local adaptation to the degree of environmental predictability in rotifers. Scientific Reports 8(1): 16051.

    PubMed  PubMed Central  Google Scholar 

  • Furness, A. I., K. Lee & D. N. Reznick, 2015. Adaptation in a variable environment: phenotypic plasticity and bet-hedging during egg diapause and hatching in an annual killifish. Evolution 69: 1461–1475.

    PubMed  Google Scholar 

  • Fussmann, G. F., 2011. Rotifers: excellent subjects for the study of macro-and microevolutionary change. Hydrobiologia 662: 11–18.

    Google Scholar 

  • Fussmann, G. F., S. P. Ellner & N. G. Hairston, 2003. Evolution as a critical component of plankton dynamics. Proceedings of the Royal Society B: Biological Sciences 270: 1015–1022.

    PubMed  PubMed Central  Google Scholar 

  • Fussmann, G. F., M. Loreau & P. A. Abrams, 2007. Eco-evolutionary dynamics of communities and ecosystems. Functional Ecology 21: 465–477.

    Google Scholar 

  • Gabaldón, C. & M. J. Carmona, 2015. Allocation patterns in modes of reproduction in two facultatively sexual cryptic rotifer species. Journal of Plankton Research 37: 429–440.

    Google Scholar 

  • Gabaldón, C., J. Montero-Pau, M. Serra & M. J. Carmona, 2013. Morphological similarity and ecological overlap in two rotifer species. PLOS ONE 8: e57087.

    PubMed  PubMed Central  Google Scholar 

  • Gabaldón, C., M. J. Carmona, J. Montero-Pau & M. Serra, 2015a. Long-term competitive dynamics of two cryptic rotifer species: diapause and fluctuating conditions. PLOS ONE 10: e0124406.

    PubMed  PubMed Central  Google Scholar 

  • Gabaldón, C., M. Serra, M. J. Carmona & J. Montero-Pau, 2015b. Life-history traits, abiotic environment and coexistence: the case of two cryptic rotifer species. Journal of Experimental Marine Biology and Ecology 465: 142–152.

    Google Scholar 

  • Gabaldón, C., J. Montero-Pau, M. J. Carmona & M. Serra, 2015c. Life-history variation, environmental fluctuations and competition in ecologically similar species: modeling the case of rotifers. Journal of Plankton Research 37: 953–965.

    Google Scholar 

  • Gabaldón, C., D. Fontaneto, M. J. Carmona, J. Montero-Pau & M. Serra, 2017. Ecological differentiation in cryptic rotifer species: what we can learn from the Brachionus plicatilis complex. Hydrobiologia 796: 7–18.

    Google Scholar 

  • García-Roger, E. M., M. J. Carmona & M. Serra, 2006. Patterns in rotifer diapausing egg banks: density and viability. Journal of Experimental Marine Biology and Ecology 336: 198–210.

    Google Scholar 

  • García-Roger, E. M., M. Serra & M. J. Carmona, 2014. Bet-hedging in diapausing egg hatching of temporary rotifer populations: a review of models and new insights. International Review of Hydrobiology 99: 96–106.

    Google Scholar 

  • Gilbert, J. J., 1963. Mictic female production in rotifer Brachionus calyciflorus. Journal of Experimental Zoology 153: 113–124.

    Google Scholar 

  • Gilbert, J. J., 1974. Dormancy in rotifers. Transactions of the American Microscopical Society 93: 490–513.

    Google Scholar 

  • Gilbert, J. J., 2002. Endogenous regulation of environmentally-induced sexuality in a rotifer: a multi-generational parental effect induced by fertilization. Freshwater Biology 47: 1633–1641.

    Google Scholar 

  • Gilbert, J. J., 2003. Environmental and endogenous control of sexuality in a rotifer life cycle: developmental and population biology. Evolution & Development 5: 19–24.

    Google Scholar 

  • Gilbert, J. J., 2007. Induction of mictic females in the rotifer Brachionus: oocytes of amictic females respond individually to population-density signal only during oogenesis shortly before oviposition. Freshwater Biology 52: 1417–1426.

    Google Scholar 

  • Gilbert, J. J., 2017a. Non-genetic polymorphisms in rotifers: environmental and endogenous controls, development, and features for predictable or unpredictable environments. Biological Reviews 92: 964–992.

    PubMed  Google Scholar 

  • Gilbert, J. J., 2017b. Resting-egg hatching and early population development in rotifers: a review and a hypothesis for differences between shallow and deep waters. Hydrobiologia 796: 235–243.

    Google Scholar 

  • Gilbert, J. J. & T. Schröder, 2004. Rotifers from diapausing, fertilized eggs: unique features and emergence. Limnology & Oceanography 49: 1341–1354.

    Google Scholar 

  • Gilbert, J. J. & T. Schröder, 2007. Intraclonal variation in propensity for mixis in rotifers: variation among females and with maternal age. Hydrobiologia 593: 121–128.

    Google Scholar 

  • Gilbert, J. J. & M. C. Diéguez, 2010. Low crowding threshold for induction of sexual reproduction and diapause in a Patagonian rotifer. Freshwater Biology 55: 1705–1718.

    Google Scholar 

  • Gómez, A. & G. R. Carvalho, 2000. Sex, parthenogenesis and genetic structure of rotifers: microsatellite analysis of contemporary and resting egg bank populations. Molecular Ecology 9: 203–214.

    PubMed  Google Scholar 

  • Gómez, A., M. Serra, G. R. Carvalho & D. Lunt, 2002. Speciation in ancient cryptic species complexes: evidence from the molecular phylogeny of Brachionus plicatilis (Rotifera). Evolution 56: 1431–1444.

    PubMed  Google Scholar 

  • Gómez, A., J. Montero-Pau & D. Lunt, 2007. Persistent genetic signatures of colonization in Brachionus manjavacas rotifers in the Iberian Peninsula. Molecular Ecology 16: 3228–3240.

    PubMed  Google Scholar 

  • Graham, J. K., M. L. Smith & A. M. Simons, 2014. Experimental evolution of bet hedging under manipulated environmental uncertainty in Neurospora crassa. Proceedings of the Royal Society B: Biological Sciences 281: 20140706.

    PubMed  PubMed Central  Google Scholar 

  • Gremer, J. R. & L. Venable, 2014. Bet hedging in desert winter annual plants: optimal germination strategies in a variable environment. Ecology Letters 17: 380–387.

    PubMed  Google Scholar 

  • Halkett, F., R. Harrington, M. Hullé, P. Kindlmann, F. Menu, C. Rispe & M. Plantegenest, 2004. Dynamics of production of sexual forms in Aphids: theoretical and experimental evidence for adaptive “coin-flipping” plasticity. The American Naturalist 163: 112–125.

    Google Scholar 

  • Haafke, J., M. A. Chakra & L. Becks, 2016. Eco-evolutionary feedback promotes red queen dynamics and selects for sex in predator populations. Evolution 70: 641–652.

    PubMed  Google Scholar 

  • Hairston, N., 1998. Time travelers: what’s timely in diapause research? Archiv für Hydrobiologie. Advances in Limnology 52: 1–15.

    Google Scholar 

  • Hairston Jr., N. G. & W. R. Munns Jr., 1984. The timing of copepod diapause as an evolutionarily stable strategy. The American Naturalist 123: 733–751.

    Google Scholar 

  • Haldane, J. B. S., 1957. The cost of natural selection. Journal of Genetics 55: 511.

    Google Scholar 

  • Huey, R. B. & A. F. Bennett, 1990. Physiological adjustments to fluctuating thermal environments: an ecological and evolutionary perspective. In Morimoto, R., A. Tissieres & C. Georgopoulos (eds), Stress Proteins in Biology and Medicine. Cold Spring Harbor Laboratory Press, New York: 37–59.

    Google Scholar 

  • Kern, P., R. L. Cramp & C. E. Franklin, 2015. Physiological responses of ectotherms to daily temperature variation. Journal of Experimental Biology 218: 3068–3076.

    PubMed  Google Scholar 

  • Kolasa, J. & C. D. Rollo, 1991. Introduction: the heterogeneity of heterogeneity: a glossay. In Kolasa, J. & T. A. Pickett (eds), Ecological Heterogeneity. Springer-Verlag, Berlin: 1–23.

    Google Scholar 

  • Kubanek, J. & T. W. Snell, 2008. Quorum sensing in rotifers. In Winans, S. C. & B. L. Bassler (eds), Chemical Communication Among Microbes. American Society for Microbiology Press, Washington, DC.

    Google Scholar 

  • Laderman, A. D. & H. N. Guttman, 1963. Induction of sexuality by alteration of photoperiod in the rotifer Brachionus rubens. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 152: 5–11.

    Google Scholar 

  • Lass, S. & P. Spaak, 2003. Chemically induced anti-predator defences in plankton: a review. Hydrobiologia 491: 221–239.

    Google Scholar 

  • Lenormand, T., D. Roze & F. Rousset, 2009. Stochasticity in evolution. Trends in Ecology and Evolution 24: 157–165.

    PubMed  Google Scholar 

  • Levins, R., 1968. Evolution in Changing Environments. Princeton University Press, Princeton.

    Google Scholar 

  • Li, X. Y., J. Lehtonen & K. Kokko, 2017. Sexual reproduction as bet-hedging. In Apaloo, J. & B. Viscolani (eds), Advances in dynamic and mean field games. Birkhäuser, Cham.

    Google Scholar 

  • Meyers, L. A. & J. J. Bull, 2002. Fighting change with change: adaptive variation in an uncertain world. Trends in Ecology and Evolution 17: 551–557.

    Google Scholar 

  • Montero-Pau, J. & M. Serra, 2011. Life-cycle switching and coexistence of species with no niche differentiation. PLOS ONE 6: e20314.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montero-Pau, J., E. Ramos-Rodríguez, M. Serra & A. Gómez, 2011. Long-term coexistence of rotifer cryptic species. PLOS ONE 6: e21530.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olofsson, H., J. Ripa & N. Jonzén, 2009. Bet-hedging as an evolutionary game: the trade-off between egg size and number. Proceedings of the Royal Society B: Biological Sciences 276: 2963–2969.

    PubMed  PubMed Central  Google Scholar 

  • Ortells, R., A. Gómez & M. Serra, 2003. Coexistence of cryptic rotifer species: ecological and genetic characterisation of Brachionus plicatilis. Freshwater Biology 48: 2194–2202.

    Google Scholar 

  • Pearman, P. B., A. Guisan, O. Broennimann & C. Randin, 2008. Niche dynamics in space and time. Trends in Ecology and Evolution 23: 149–158.

    PubMed  Google Scholar 

  • Philippi, T., 1993a. Bet-hedging germination of desert annuals—beyond the first year. The American Naturalist 142: 474–487.

    CAS  PubMed  Google Scholar 

  • Philippi, T., 1993b. Bet-hedging germination of desert annuals: variation among populations and maternal effects in Lepidium lasiocarpum. The American Naturalist 142: 488–507.

    CAS  PubMed  Google Scholar 

  • Philippi, T. & J. Seger, 1989. Hedging one’s evolutionary bets, revisited. Trends in Ecology and Evolution 4: 41–44.

    CAS  PubMed  Google Scholar 

  • Philippi, T., M. A. Simovich, E. T. Bauder & J. A. Moorad, 2001. Habitat ephemerality and hatching fractions of a diapausing anostracan (Crustacea: Branchiopoda). Israel Journal of Zoology 47(4): 387–395.

    Google Scholar 

  • Pinceel, T., W. Hawinkel, E. Wynants, L. Brendonck & B. Vanschoenwinkel, 2017. Habitat uncertainty explains variation in offspring provisioning strategies in a temporary pond crustacean. Hydrobiologia 801: 141–151.

    Google Scholar 

  • Pourriot, R., 1963. Influence du rythme nycthéméral sur le cycle sexuel de quelques Rotifères. Comptes Rendus de l’Académie des Sciences Paris 256: 5216–5219.

    Google Scholar 

  • Pourriot, R. & P. Clément, 1975. Influence de la dureé de l’éclairement quotidien sur le taux de femelles mictiques chez Notommata copeus Ehr. (Rotifère). Oecologia 22: 67–77.

    PubMed  Google Scholar 

  • Pourriot, R. & T. W. Snell, 1983. Resting eggs in rotifers. Hydrobiologia 104: 213–224.

    Google Scholar 

  • Pourriot, R., C. Rougier & D. Benest, 1986. Influence de la température sur la reproduction et la résponse mictique a la photopériode chez le rotifère Notommata copeus Ehrb. Vie Milieu 36: 37–43.

    Google Scholar 

  • Sasaki, A. & S. P. Ellner, 1997. Quantitative genetic variance maintained by fluctuating selection with overlapping generations: variance components and covariances. Evolution 51: 682–696.

    PubMed  Google Scholar 

  • Scheuerl, T. & C. P. Stelzer, 2013. Patterns and dynamics of rapid local adaptation and sex in varying habitat types in rotifers. Ecology and Evolution 3: 4253–4264.

    PubMed  PubMed Central  Google Scholar 

  • Schröder, T., 2005. Diapause in monogonont rotifers. Hydrobiologia 181: 291–306.

    Google Scholar 

  • Schröder, T., S. Howard, M. L. Arroyo & E. J. Walsh, 2007. Sexual reproduction and diapause of Hexarthra sp. (Rotifera) in short-lived ponds in the Chihuahuan Desert. Freshwater Biology 52: 1033–1042.

    Google Scholar 

  • Seger, J. & H. J. Brockmann, 1987. What is bet-hedging? In Harvey, P. J. & L. Partridge (eds), Oxford Surveys in Evolutionary Biology. Oxford University Press, Oxford: 182–211.

    Google Scholar 

  • Serra, M. & M. J. Carmona, 1993. Mixis strategies and resting egg production of rotifers living in temporally-varying habitats. Hydrobiologia 255/256: 117–126.

  • Serra, M., A. Gómez & M. J. Carmona, 1998. Ecological genetics of Brachionus sympatric sibling species. Hydrobiologia 387: 373–384.

    Google Scholar 

  • Serra, M. & C. E. King, 1999. Optimal rates of bisexual reproduction in cyclical parthenogens with density-dependent growth. Journal of Evolutionary Biology 12: 263–271.

    Google Scholar 

  • Serra, M., T. W. Snell & C. E. King, 2004. The timing of sex in cyclical parthenogentic rotifers. In Moya, A. & E. Font (eds), Evolution: from molecules to ecosystems. Oxford University Press, Oxford.

    Google Scholar 

  • Serra, M., T. W. Snell & J. J. Gilbert, 2005. Delayed mixis in rotifers: an adaptive response to the effects of density dependent sex on population growth. Journal of Plankton Research 27: 37–45.

    Google Scholar 

  • Serra, M., H. A. Smith, J. S. Weitz & T. W. Snell, 2011. Analysing threshold effects in the sexual dynamics of cyclically parthenogenetic rotifer populations. Hydrobiologia 662: 121–130.

    CAS  Google Scholar 

  • Serra, M., T. W. Snell & R. L. Wallace, 2018. Reproduction, overview by phylogeny: Rotifera. In Skinner, M. K. (ed.), Encyclopedia of Reproduction, Vol. 6. Elsevier: Academic Press, Amsterdam: 513–521.

    Google Scholar 

  • Smith, H. A. & T. Snell, 2012. Rapid evolution of sex frequency and dormancy as hydroperiod adaptations. Journal of Evolutionary Biology 25: 2501–2510.

    CAS  PubMed  Google Scholar 

  • Simons, A. M., 2009. Fluctuating natural selection accounts for the evolution of diversification bet hedging. Proceedings of the Royal Society of London B: Biological Sciences 276: 1987–1992.

    Google Scholar 

  • Simons, A. M., 2011. Modes of response to environmental change and the elusive empirical evidence for bet hedging. Proceedings of the Royal Society of London B: Biological Sciences 278: 1601–1609.

    Google Scholar 

  • Simons, A. M. & M. O. Johnson, 2003. Suboptimal timing of reproduction in Lobelia inflata may be a conservative bet-hedging strategy. Journal of Evolutionary Biology 16: 233–243.

    CAS  PubMed  Google Scholar 

  • Snell, T. W. & E. M. Boyer, 1988. Thresholds for mictic female production in the rotifer Brachionus plicatilis (Muller). Journal of Experimental Marine Biology and Ecology 124: 73–78.

    Google Scholar 

  • Snell, T. W. & B. L. Garman, 1986. Encounter probabilities between male and female rotifers. Journal of Experimental Marine Biology and Ecology 97: 221–230.

    Google Scholar 

  • Snell, T. W., J. Kubanek, W. Carter, A. B. Payne, J. Kim, M. K. Hicks & C. P. Stelzer, 2006. A protein signal triggers sexual reproduction in Brachionus plicatilis (Rotifera). Marine Biology 149: 763–773.

    CAS  Google Scholar 

  • Spencer, M., N. Colegrave & S. S. Schwartz, 2001. Hatching fraction and timing of resting stage production in seasonal environments: effects of density dependence and uncertain season length. Journal of Evolutionary Biology 14: 357–367.

    Google Scholar 

  • Stelzer, C. P., 2005. Evolution of rotifer life histories. Hydrobiologia 546: 335–346.

    Google Scholar 

  • Tarazona, E., E. M. García-Roger & M. J. Carmona, 2017. Experimental evolution of bet hedging in rotifer diapause traits as a response to environmental unpredictability. Oikos 126: 1162–1172.

    Google Scholar 

  • Tian, X., G. J. He, P. Hu, L. Chen, C. Tao, Y. L. Cui, L. Shen, W. Ke, H. Xu, Y. Zhao & Q. Xu, 2018. Cryptococcus neoformans sexual reproduction is controlled by a quorum sensing peptide. Nature Microbiology 3: 698–707.

    CAS  PubMed  Google Scholar 

  • Tollrian, R. & C. D. Harvell, 1999. The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton.

    Google Scholar 

  • Young, J. P. W., 1979. Enzyme polymorphism and cyclic parthenogenesis in Daphnia magna. ii. Heterosis following sexual reproduction. Genetics 92: 971–982.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yerushalmi, S. & R. M. Green, 2009. Evidence for the adaptive significance of circadian rhythms. Ecology letters 12: 970–981.

    PubMed  Google Scholar 

  • Vasseur, D. A. & K. S. McCann, 2007. The Impact of Environmental Variability on Ecological Systems. Springer, Berlin.

    Google Scholar 

  • Venable, D. L. & J. S. Brown, 1988. The selective interactions of dispersal, dormancy, and seed size as adaptations for reducing risk in variable environments. The American Naturalist 131: 360–384.

    Google Scholar 

  • Walczyńska, A., L. Franch-Gras & M. Serra, 2017. Empirical evidence for fast temperature-dependent body size evolution in rotifers. Hydrobiologia 796: 191–200.

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Spanish Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica from the Spanish Ministry of Economy and Competitiveness, grant CGL2015-65422-P (co-financed by FEDER funds, European Union). L.F.-G. was supported by a predoctoral contract (PREDOC13-110502) from the Universitat de Valencia and E.T was supported by a predoctoral contract from the Spanish Ministry of Economy and Competitiveness (BES-2013-066448).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Serra.

Additional information

Guest editors: Steven A. J. Declerck, Diego Fontaneto, Rick Hochberg & Terry W. Snell / Crossing Disciplinary Borders in Rotifer

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 93 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franch-Gras, L., Tarazona, E., García-Roger, E.M. et al. Rotifer adaptation to the unpredictability of the growing season. Hydrobiologia 844, 257–273 (2019). https://doi.org/10.1007/s10750-019-3886-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-3886-y

Keywords

Navigation