Skip to main content

Advertisement

Log in

Sluggish methane discharge and biological traits of benthic invertebrates in Lake Baikal

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The biological traits of invertebrates inhabiting freshwater methane seeps are poorly understood. We analysed the relationship between invertebrate abundance and environmental factors such as methane concentration, location of gas hydrates in sediments, sediment composition, and the total number of microorganisms (TNMs), including methanotrophs. The abundance of invertebrates varied greatly (CV 10–136%) across box core samples and stations. No significant differences (P > 0.05) in the abundance of invertebrates were found between stations with sluggish methane discharge, methane concentrations, and gas hydrates located deep in sediments (> 70 cm) and the reference stations. The abundance of meio- and macrobenthic invertebrates reached ~ 130,000 ind. m−2 around gas hydrates ~ 30 cm deep in the sediments. The abundance of nematodes significantly depended on the presence of sulfur bacteria and copepod detritus, while oligochaetes were correlated with the TNMs. Amphipod abundance was dependent on the number of methanotrophic bacteria, while ostracods and copepods showed no dependence on the studied biotic factors. Stable isotope analysis of δ13C and δ15N indicated that oligochaetes and chironomids consumed different proportions of chemosynthetic carbon. Most benthic invertebrates also formed aggregates, possibly enabling the complete utilization of food resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aloisi, G., T. V. Pogodaeva, J. Poort, A. V. Khabuev, A. V. Kazakov, G. G. Akhmanov & O. M. Khlystov, 2019. Biogeochemical processes at the Krasnyi Yar seepage area (Lake Baikal) and a comparison with oceanic seeps. Geo-Marine Letters 39: 59–75.

    Article  CAS  Google Scholar 

  • Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26(1): 32–46.

    Google Scholar 

  • Baldrighi, E., D. Zeppili, L. Appolloni, L. Donnarumma, E. Chianese, G. F. Russo & R. Sandulli, 2020. Meiofaunal communities and nematode diversity characterizing the Secca delle Fumose shallow vent area (Gulf of Naples, Italy). PeerJ 8: e9058.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bazikalova, A. Ya., 1975. On the systematics of Baikal amphipods (Genera Carinogammarus Stebbing, Eucarinogammarus Sowinsky, Echiuropus (Sow.) and Asprogammarus gen. n.). In Bekman, M. Yu. (ed), New of the fauna of Lake Baikal, Part 1 Nauka, Novosibirsk: 31–81. (in Russian).

  • Bekman, M. Yu., 1984. Deep-water amphipod fauna. In Linevich, A. A. (ed), Systematics and Evolution of Baikal Invertebrates Nauka, Novosibirsk: 114–123. (in Russian).

    Google Scholar 

  • Bekman, M. Yu. & I. B. Mizandrontsev, 1971. On the relationships between distribution of benthos and organic matter in sediments. In Bekman, M. Yu. (ed), Limnology of Pridelt Areas of Baikal Nauka, Leningrad: 127–131. (in Russian).

    Google Scholar 

  • Bernardino, A. F., L. A. Levin, A. R. Thurber & C. R. Smith, 2012. Comparative composition, diversity and trophic ecology of sediment macrofauna at vents, seeps and organic falls. PLoS ONE 7(4): e33515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bol’shakov, A. M. & A. V. Egorov, 1987. Application of phase equilibrium degassing in gasometric research. Oceanology 27(5): 861–862.

    Google Scholar 

  • Borovikov, V. P., 2018. A popular introduction to modern data analysis with STATISTICA. Techbook, Moscow: 1–288 (in Russian).

  • Bourne, D. G., A. J. Holmes, N. Ivensen & J. C. Murrell, 2000. Fluorescent oligonucleotide rDNA probes for specific detection of methane oxidizing bacteria. FEMS Microbiological Ecology 31: 29–38.

    Article  CAS  Google Scholar 

  • Bravo, M. E., L. A. Levin, S. M. Fiori, S. Aliotta & S. Ginsberg, 2021. Can no-bubble methane seeps affect biological traits of benthic macroinvertebrates in coastal systems? Estuarine, Coastal and Shelf Science 261: 107525.

    Article  CAS  Google Scholar 

  • Bukin, S. V., O. N. Pavlova, A. Y. Manakov, E. A. Kostreva, S. M. Chernitsyna, E. V. Mamaeva, T. V. Pogodaeva & T. I. Zemskaya, 2016. The ability of microbial community of Lake Baikal bottom sediments associated with gas discharge to carry out the transformation of organic matter under thermobaric conditions. Frontiers in Microbiology 7(690): 1–18.

    Google Scholar 

  • Bukin, S. V., O. N. Pavlova, G. V. Kalmychkov, V. G. Ivanov, T. V. Pogodaeva, Yu. P. Galachyants, Yu. S. Bukin, A. V. Khabuev & T. I. Zemskaya, 2018. Substrate specificity of methanogenic communities from Lake Baikal bottom sediments associated with hydrocarbon gas discharge. Microbiology 87(4): 549–558.

    Article  CAS  Google Scholar 

  • Cherepanov, V. V., 1978. Ecological structure and productivity of bottom dwellers. In Galaziy, G. I. & K. K. Votintsev (eds), Problems of Baikal Nauka, Novosibirsk: 199–216. (in Russian).

    Google Scholar 

  • Chernitsyna, S. M., E. V. Mamaeva, A. V. Lomakina, T. V. Pogodaeva, Yu. P. Galachyants, S. V. Bukin, N. V. Pimenov, O. M. Khlystov & T. I. Zemskaya, 2016a. Phylogenetic diversity of microbial communities of the Posolsk Bank bottom sediments, Lake Baikal. Microbiology 85(6): 652–662.

    Article  Google Scholar 

  • Chernitsyna, S. M., I. A. Khalzov, T. A. Khanaeva, I. V. Morozov, I. V. Klimenkov, N. V. Pimenov & T. I. Zemskaya, 2016b. Microbial community associated with Thioploca sp. sheaths in the areas of the Posolsk Bank methane seep, southern Baikal. Microbiology 85(5): 522–530.

    Article  CAS  PubMed  Google Scholar 

  • Chernitsyna, S. M., I. A. Khalzov, T. Ya. Sitnikova, T. V. Naumova, A. V. Khabuev & T. I. Zemskaya, 2021. Microbial communities associated with benthic invertebrates of Lake Baikal. Current Microbiology 78: 3020–3031.

    Article  CAS  PubMed  Google Scholar 

  • Den’gina, R. S., 1948. On benthos in abyssal of Southern Baikal. Doklady Akademii Nauk SSSR 60(1): 149–152 (in Russian).

    Google Scholar 

  • Devlin, Sh., J. Saarenheimo, J. Syväranta & R. I. Jones, 2015. Top consumer abundance influences lake methane efflux. Nature Communications 6: 8787.

    Article  PubMed  Google Scholar 

  • Dimitriadou, E., K. Hornik, F. Leisch, D. Meyer & A. Weingessel, 2008. Misc functions of the Department of Statistics (e1071), TU Wien. R package 1, 5–24.

  • Dyson, K., 2018. Custom community ecology helper R scripts [available on internet at: https://github.com/kdyson/R_Scripts]. Accessed on 20 Dec 2020.

  • Dyson, K., 2019. Vegetation communities on commercial developments are heterogeneous and determined by development and landscaping decisions, not socioeconomics. PLoS ONE 14(9): e0222069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eller, G., S. Stubner & P. Frenzel, 2001. Group specific 16S rRNA targeted probes for the detection of type I and II methanotrophs by fluorescence in situ hybridization. FEMS Microbiology Letters 198: 91–97.

    Article  CAS  PubMed  Google Scholar 

  • Fort, H., 2013. Two cellular automata designate for ecological problems: Mendota CA and Barro Colorado Island CA. In Salcido, A. (ed), Emerging Applications of Cellular Automata InTechOpen, London: 1–21.

    Google Scholar 

  • Fry, B. & A. B. Sherr, 1984. δ13C measurements as indicators of carbon f low in marine and freshwater systems. Contributions in Marine Science 27: 13–46.

    CAS  Google Scholar 

  • Gebruk, A. M., A. P. Kuznetsov, B. B. Namsaraev & Yu. M. Miller, 1993. The role of bacterial component in deep-water benthic animals in Frolikha Bay (Lake Baikal). Proceedings of the Russian Academy of Sciences, Series in Biology 6: 903–908.

    Google Scholar 

  • Golubev, V. A. 2007. Conductive and Convective Heat Output in the Baikal Rift Zone. Nauka, Novosibirsk: 1–222 (in Russian).

  • Grachev, M., V. Fialkov, T. Nakamura, T. Ohta & T. Kawai, 1995. Extant fauna of ancient carbon. Nature 374: 123–124.

    Article  CAS  Google Scholar 

  • Granin, N. G., M. M. Makarov, K. M. Kucher & R. Y. Gnatovsky, 2010. Gas seeps in Lake Baikal – detection, distribution, and implications for water column mixing. Geo-Marine Letters 30(3–4): 399–409.

    Article  CAS  Google Scholar 

  • Hairston, N. G., R. Hill & U. Ritte, 1971. The interpretation of aggregation patterns. In Patil, G. P., E. C. Pileou & W. E. Waters (eds), Statistical Ecology 1: Spatial Patterns and Statistical Distributions Penn State University Press, University Park: 337–356.

    Google Scholar 

  • Jones, R. I. & J. Grey, 2004. Stable isotope analysis of chironomid larvae from some Finnish forest lakes indicates dietary contribution from biogenic methane. Boreal Environment Research 9: 17–23.

    Google Scholar 

  • Jones, R. I. & JTh. Grey, 2011. Biogenic methane in freshwater food webs. Freshwater Biology 56: 213–229.

    Article  CAS  Google Scholar 

  • Kalmychkov, G. V., A. V. Egorov, M. I. Kuzmin & O. M. Khlystov, 2006. Genetic types of methane from Lake Baikal. Doklady Earth Science 411: 672–675.

    Article  Google Scholar 

  • Kalmychkov, G. V., B. G. Pokrovsky, A. Hachikubo & O. M. Khlystov, 2017. Geochemical characteristics of methane from sediments of the underwater high Posolsky Bank (Lake Baikal). Lithology and Mineral Resources 52(2): 102–110.

    Article  CAS  Google Scholar 

  • Kaygorodova, I. A., 2011. Deep-water fauna of Oligochaeta (Annelida, Clitellata) near hydrothermal spring of the Frolikha Bay, Northern Baikal (East Siberia, Russia). Journal of Siberian Federal University Biology 2: 117–132 (in Russian).

    Google Scholar 

  • Khalzov, I. A., I. V. Mekhanikova & T. Ya. Sitnikova, 2018. First data on ectosymbiotic consortia of infusoria and prokaryotes associated with amphipods inhabiting the Frolikha underwater hydrothermal vent, Lake Baikal. Zoologicheskii Zhurnal 97: 1525–1530 (in Russian).

    Google Scholar 

  • Khalzov, I. A., S. V. Bukin, A. S. Zacharenko, S. M. Chernitsyna, Yu. P. Galachyants, T. Ya. Sitnikova & T. I. Zemskaya, 2021. Microbial communities associated with the ostracods Candona sp. inhabiting the area of the methane seep Goloustnoe (Lake Baikal). Symbiosis 85(2): 163–174.

    Article  CAS  Google Scholar 

  • Khanaeva, T. A., O. N. Pavlova, S. M. Chernitsyna, I. A. Khalzov, A. V. Khabuev, A. A. Nikonova, A. S. Novikova & T. I. Zemskaya, 2017. Thermophilic facultative anaerobic bacteria of the genus Geobacillus from bottom sediments of Lake Baikal. Acta Biologica Sibirica 3(3): 39–46.

    Article  Google Scholar 

  • Khlystov, O. M., T. I. Zemskaya, T. Ya. Sitnikova, I. V. Mekhanikova, I. A. Kaigorodova, A. G. Gorshkov, O. A. Timoshkin, O. V. Shubenkova, S. M. Chernitsyna, A. V. Lomakina, A. V. Likhoshvai, A. M. Sagalevich, V. I. Moskvin, V. I. Peresypkin, N. A. Belyaev, M. V. Slipenchuk, A. K. Tulokhonov & M. A. Grachev, 2009. Bottom bituminous constructions and biota inhabiting them according to investigation of Lake Baikal with the MIR submersible. Doklady Earth Sciences 429: 1333–1336.

    Article  CAS  Google Scholar 

  • Khlystov, O., M. De Batist, H. Shoji, A. Hachikubo, S. Nishio, L. Naudts, J. Poort, A. Khabuev, O. Belousov, A. Manakov & G. Kalmychkov, 2013. Gas hydrate of Lake Baikal: discovery and varieties. Journal of Asian Earth Sciences 62(1): 162–166.

    Article  Google Scholar 

  • Khlystov, O. M., A. V. Khabuev, H. Minami, A. Hachikubo & A. A. Krylov, 2018. Gas hydrates in Lake Baikal. Limnology and Freshwater Biology 1: 66–70.

    Article  Google Scholar 

  • Kiyashko, S. I., T. Narita & E. Wada, 2001. Contribution of methanotrophs to freshwater macroinvertebrates: evidence from stable isotope ratios. Aquatic Microbial Ecology 24: 203–207.

    Article  Google Scholar 

  • Klerkx, J., M. De Batist, J. Poort, R. Hus, P. Van Rensbergen, O. Khlystov & N. Granin, 2006. Tectonically controlled methane escape in Lake Baikal. In Lombardi, S., L. K. Altunina & S. E. Beaubien (eds), Advances in the Geological Storage of Carbon Dioxide. NATO Science Series, IV. Earth and Environmental Sciences. IOS Press, Springer, Dordrecht, 65: 203–219.

  • Kozhov, M. M., 1963. Baikal and Its Life, Dr. W. Junk Publishers, The Hague:, 1–315.

    Google Scholar 

  • Kuzmin, M. I., G. V. Kalmychkov, V. F. Geletii, V. A. Gnilusha, A. V. Goreglyad, B. N. Khakhaev, L. A. Pevzner, T. Kawai, N. Ioshida, A. D. Duchkov, V. A. Ponomarchuk, A. E. Kontorovich, N. M. Bazhin, G. A. Mahov, Yu. A. Dyadin, F. A. Kuznetsov, E. G. Larionov, AYu. Manakov, B. S. Smolyakov, M. M. Mandelbaum & N. K. Zheleznyakov, 1998. The first findings of gas hydrate in sedimentary sequence of Lake Baikal. Doklady of RAS 62(5): 141–143 (in Russian).

    Google Scholar 

  • Kuznetsov, A. P., V. P. Strizhev, V. S. Kuzin, V. A. Fialkov & V. S. Yastrebov, 1991. New in Lake Baikal nature. Community based on bacterial chemosynthesis. Izvestiya Akademii Nauk SSR, Biologia 5: 766–772.

    Google Scholar 

  • Kvenvolden, K. A. & G. D. Redden, 1980. Hydrocarbon gas in sediments from the shelf, slope and basin of the Bering Sea. Geochimica et Cosmochimica Acta 44(8): 1145–1150.

    Article  CAS  Google Scholar 

  • Levin, L. A., 2005. Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes. In Gibson, R. N., R. J. A. Atkinson & J. D. M. Gordon (eds), Oceanography and Marine Biology: An Annual Review 43 CRC Press-Taylor & Francis Group, Boca Raton: 1–46.

    Google Scholar 

  • Levin, L. A. & R. H. Michener, 2002. Isotopic evidence for chemosynthesis-based nutrition of macrobenthos: the lightness of being at Pacific methane seeps. Limnology and Oceanography 47(5): 1336–1345.

    Article  Google Scholar 

  • Levin, L. A., W. Ekau, A. J. Gooday, F. Jorissen, J. J. Middelburg, S. W. A. Naqvi, C. Neira, N. N. Rabalais & J. Zhang, 2009. Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences 6: 2063–2098.

    Article  CAS  Google Scholar 

  • Levin, L. A., A. R. Baco, D. A. Bowden, A. Colaco, E. E. Cordes, M. R. Cunha, A. W. J. Demopoulos, J. Gobin, B. M. Grupe, J. Le, A. Metaxas, A. N. Netburn, G. W. Rouse, A. R. Thurber, V. Tunnicliffe, C. L. Van Dover, A. Vanreusel & L. Watling, 2016. Hydrothermal vents and methane seeps: rethinking the sphere of influence. Frontiers in Marine Science 3(3): 1–23.

    Google Scholar 

  • Lomakina, A. V., S. V. Bukin, T. V. Pogodaeva, V. G. Ivanov, I. A. Khalzov, A. A. Krylov & T. I. Zemskaya, 2020. Anaerobic oxidation of methane in differences types of geological structures at Lake Baikal. Limnology and Freshwater Biology 4: 1000–1003.

    Article  Google Scholar 

  • Makarov, M. M., S. I. Muyakshin, K. M. Kucher, I. A. Aslamov, R. Y. Gnatovsky & N. G. Granin, 2016. Bubble gas escapes from the bottom of Lake Baikal, dependence of gas flare height on methane flux. Fundamental and Applied Hydrophysics 9(3): 32–41.

    Google Scholar 

  • Medenjak, M., V. Popkov, T. Prosen, E. Ragoucy & M. Vanicat, 2019. Two-species hardcore reversible cellular automation: matrix ansatz for dynamics and nonequilibrium stationary state. SciPost Physics 6: 074.

    Article  Google Scholar 

  • Mekhanikova, I. V. & T. Ya. Sitnikova, 2014. Amphipods (Amphipoda, Gammaridea) at the Gorevoy Utes oil and methane seep, Lake Baikal. Crustaceana 87(13): 1500–1520.

    Article  Google Scholar 

  • Morisita, M., 1962. Iδ-Index: a measure of dispersion of individuals. Researches on Population Ecology 4(1): 1–7.

    Article  Google Scholar 

  • Naudts, L., O. Khlystov, N. Granin, A. Chensky, J. Poort & M. De Batist, 2012. Stratigraphic and structural control on the distribution of gas hydrates and active gas seeps on the Posolsky Bank, Lake Baikal. Geo-Marine Letters 32(5–6): 395–406.

    Article  CAS  Google Scholar 

  • Naumova, T. V. & V. G. Gagarin, 2019. Review of the free-living Nematode (Nematoda) fauna of Lake Baikal. Zootaxa 4608: 101–118.

    Article  Google Scholar 

  • Naumova, T. V. & V. G. Gagarin, 2020. Two new nematode species of the genus Paratrilobus Micoletzky, 1922 (Nematoda, Triplonchida) from the water area of Lake Baikal (Russia). European Journal of Taxonomy 723: 159–172.

    Article  Google Scholar 

  • Naumova, T. V., T. Ya. Sitnikova & V. G. Gagarin, 2012. The species composition and distribution of free-living nematodes (Nematoda) in an area of natural oil and gas seeps in Lake Baikal. Inland Water Biology 5(2): 161–168.

    Article  Google Scholar 

  • Nishino, M., M. Fukui & T. Nakajima, 1998. Dense mats of Thioploca, gliding filamentous sulphur-oxidizing bacteria in Lake Biwa, central Japan. Water Research 32: 953–957.

    Article  CAS  Google Scholar 

  • Oksanen, J. V., 2018. An introduction to ordination. R Project [available on internet at: https://cran.r-project.org/web/packages/vegan/vignettes/intro-vegan.pdf]. Accessed on 20 Dec 2020.

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, R. B. O’Hara, G. L. Simpson & H. Wagner, 2010. Vegan: community ecology package. R package version 1.17-4 [available on internet at: http://cran.r-project.org]. Accessed on 20 Dec 2020.

  • Pape, E., T. N. Bezerra, H. Vanneste, K. Heeschen, L. Moodley, F. Leroux, P. van Breugel & A. Vanreusel, 2011. Community structure and feeding preference of nematodes associated with methane seepage at the Darwin Mud Volcano (Gulf of Cádiz). Marine Ecology Progress Series 438: 71–83.

    Article  Google Scholar 

  • Pavlova, O. N., S. V. Bukin, A. V. Lomakina, G. V. Kalmychkov, V. V. Ivanov, I. V. Morozov, T. V. Pogodaeva, N. V. Pimenov & T. I. Zemskaya, 2014. Production of gaseous hydrocarbons by microbial communities of Lake Baikal bottom sediments. Microbiology 83(6): 694–702.

    Article  CAS  PubMed  Google Scholar 

  • Pimenov, N. V., E. E. Zakharova, A. L. Bryukhanov, V. A. Korneeva, B. B. Kuznetsov, T. P. Tourova, T. V. Pogodaeva, G. V. Kalmychkov & T. I. Zemskaya, 2014. Activity and structure of the sulphate-reducing bacterial community in the sediments of the southern part of Lake Baikal. Microbiology 83(2): 180–190.

    CAS  PubMed  Google Scholar 

  • Plum, Ch., S. Gollner, P. Martínez-Arbizu & M. Bright, 2015. Diversity and composition of the copepod communities associated with megafauna around a cold seep in the Gulf of Mexico with remarks on species biogeography. Marine Biodiversity 45(3): 419–432.

    Article  Google Scholar 

  • Pogodaeva, T. V., T. I. Zemskaya, L. P. Golobokova, O. M. Khlystov, H. Minami & H. Sakagami, 2007. Chemical composition of pore waters of bottom sediments in different Baikal basins. Russian Geology and Geophysics 48: 886–900.

    Article  Google Scholar 

  • Pogodaeva, T. V., I. N. Lopatina, O. M. Khlystov, A. V. Egorov & T. I. Zemskaya, 2017. Background composition of pore waters in Lake Baikal bottom sediments. Journal of Great Lakes Research 43: 1030–1043.

    Article  CAS  Google Scholar 

  • Portail, M., K. Olu, E. Escobar-Briones, J. C. Caprais, L. Menot, M. Waeles, P. Cruaud, P. M. Sarradin, A. Godfroy & J. Sarrazin, 2015. Comparative study of vent and seep macrofaunal communities in the Guaymas Basin. Biogeosciences 12: 5455–5479.

    Article  Google Scholar 

  • Porter, K. G., 1980. The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography 25: 943–948.

    Article  Google Scholar 

  • Portnova, D. A., V. O. Mokievsky, H. Haflidason & K. Todt, 2014. Metazoan meiobenthos and nematode assemblages in the Nyegga region of methane seepage (Norwegian Sea). Russian Journal of Marine Biology 40(4): 255–265.

    Article  Google Scholar 

  • Razaz, M., D. Di Iorio, B. Wang & I. MacDonald, 2020. Temporal variations of a natural hydrocarbon seep using a deep-sea camera system. Journal of Atmospheric and Oceanic Technology 37(9): 1737–1751.

    Article  Google Scholar 

  • Ritt, B., C. Pierre, O. Gauthier, F. Wenzhöfer, A. Boetius & J. Sarrazin, 2011. Diversity and distribution of cold-seep fauna associated with different geological and environmental settings at mud volcanoes and pockmarks of the Nile Deep-Sea Fan. Marine Biology 158: 1187–1210.

    Article  Google Scholar 

  • Rosli, N., D. Leduc, A. A. Rowden & K. Probert, 2017. Review of recent trends in ecological studies of deep-sea meiofauna, with focus on patterns and processes at small to regional spatial scales. Marine Biodiversity 48(1): 13–34.

    Article  Google Scholar 

  • Schilder, J., M. van Hardenbroek, P. Bodelier, E. P. Kirilova, M. Leuenberger, A. F. Lotter & O. Heiri, 2017. Trophic state changes can affect the importance of methane-derived carbon in aquatic food webs. Proceedings of the Royal Society B: Biological Science 284: 20170278.

    Article  Google Scholar 

  • Schlacher, T. A. & T. H. Wooldridge, 1996. How sieve mesh size affects sample estimates of estuarine benthic macrofauna. Journal of Experimental Marine Biology and Ecology 201(1–2): 159–171.

    Article  Google Scholar 

  • Schulz, H. N. & B. B. Jorgensen, 2001. Big bacteria. Annual Review of Microbiology 55: 105–137.

    Article  CAS  PubMed  Google Scholar 

  • Sergeeva, N. G. & M. B. Gulin, 2007. Meiobenthos from an active methane seepage area in the NW Black Sea. Marine Ecology 28: 152–159.

    Article  Google Scholar 

  • Sevastou, K., N. Lampadariou, P. N. Polymenakou & A. Tselepides, 2013. Benthic communities in the deep Mediterranean Sea: exploring microbial and meiofaunal patterns in slope and basin ecosystems. Biogeosciences 10: 4861–4878.

    Article  Google Scholar 

  • Sideleva, V. G., 2003. The Endemic Fishes of Lake Baikal, Backhuys Publishers, Leiden:, 1–270.

    Google Scholar 

  • Sideleva, V. G. & V. A. Fialkov, 2015. Cottoid fishes (Cottoidei) in deep-water hydrothermal vent community in Frolikha Bay, Lake Baikal. Trudy VNIRO 156: 132–145.

    Google Scholar 

  • Sideleva, V. G. & V. A. Fialkov, 2016. Communities of the cottoid fish (Cottoidei) in the hydrothermal vents and cold seeps of the abyssal zone of Lake Baikal. Journal of Ichthyology 56(5): 694–701.

    Article  Google Scholar 

  • Sitnikova, T. Y. & A. A. Shirokaya, 2013. New data on deep-water Baikal limpets found in hydrothermal vents and oil-seeps. Archiv für Molluskenkunde 142(2): 257–278.

    Article  Google Scholar 

  • Sitnikova, T. Ya., V. A. Fialkov & Ya. I. Starobogatov, 1993. Gastropoda from underwater hydrothermal vent of Baikal Lake. Ruthenica 3(2): 133–136.

    Google Scholar 

  • Sitnikova, T. Ya., T. I. Zemskaya, S. M. Chernitsyna, A. V. Likhoshway, I. V. Klimenkov & T. V. Naumova, 2015. Structure of biocenosis formed on bitumen mounds in the abyssal zone of Lake Baikal. Russian Journal of Ecology 46(3): 292–298.

    Article  CAS  Google Scholar 

  • Sitnikova, T. Ya., I. V. Mekhanikova, V. G. Sideleva, S. I. Kiyashko, T. V. Naumova, T. I. Zemskaya & O. M. Khlystov, 2017a. Trophic relationships between macroinvertebrates and fish in St Petersburg methane seep community in abyssal zone of Lake Baikal. Contemporary Problems of Ecology 10(2): 147–156.

    Article  Google Scholar 

  • Sitnikova, T. Ya., V. G. Sideleva, S. I. Kiyashko, T. I. Zemskaya, I. V. Mekhanikova, O. M. Khlystov & I. A. Khalzov, 2017b. Comparative analysis of communities of macroinvertebrates and fish associated with methane and oil-methane seeps in abyssal Lake Baikal. Uspekhi Sovremennoy Biologii 137(4): 373–386 (in Russian).

    Google Scholar 

  • Somerfield, P. J., S. L. Dashfield & R. M. Warwick, 2018. The structure and organisation of integral marine benthic communities in relation to sieve mesh size. Journal of Experimental Marine Biology and Ecology 502: 164–173.

    Article  Google Scholar 

  • Steichen, D. J., S. Holbrook Jr. & C. W. Osenberg, 1996. Distribution and abundance of benthic and demersal macrofauna within a natural hydrocarbon seep. Marine Ecology Progress Series 138: 71–82.

    Article  Google Scholar 

  • Takhteev, V. V., 1997. The gammarid genus Plesiogammarus Stebbing, 1899, in Lake Baikal, Siberia (Crustacea: Amphipoda: Gammaridea). Arthropoda Selecta 6(1/2): 31–54.

    Google Scholar 

  • Takhteev, V. V., L. N. Snimshchikova, G. L. Okuneva, O. A. Timoshkin, L. A. Obolkina & A. I. Tanichev, 1993. A description of bottom inhabitants of the deep zone of Lake Baikal. Ecologiya 6: 60–68 (in Russian).

    Google Scholar 

  • Takhteev, V. V., N. A. Berezina & D. A. Sidorov, 2015. Checklist of the Amphipoda (Crustacea) from continental waters of Russia, with data on alien species. Arthropoda Selecta 24(3): 335–370.

    Google Scholar 

  • Thurber, A. R., L. A. Levin, A. A. Rowden, S. Sommer, P. Linke & K. Kröger, 2013. Microbes, macrofauna, and methane: a newel seep community fuelled by aerobic methanotrophy. Limnology and Oceanography 58(5): 1640–1656.

    Article  CAS  Google Scholar 

  • Turner, Ph. J., B. Ball, Z. Diana, A. Fariñas-Bermejo, I. Grace, D. McVeigh, M. M. Powers, L. Van Audenhaege, S. Maslakova, C. M. Young & C. L. Van Dover, 2020. Methane seeps on the US Atlantic margin and their potential importance to populations of the commercially valuable deep-sea red crab. Chaceon Quinquedens. Frontiers in Marine Science 7: 75.

    Article  Google Scholar 

  • Van Gaever, S., K. Olu, S. Derycke & A. Vanreusel, 2009a. Metazoan meiofaunal communities at cold seeps along the Norwegian margin: influence of habitat heterogeneity and evidence for connection with shallow-water habitats. Deep Sea Research Part I: Oceanographic Research Papers 56(5): 772–785.

    Article  Google Scholar 

  • Van Gaever, S., L. Moodley, F. Pasotti, M. Houtekamer, J. J. Middelburg, R. Danovaro & A. Vanreusel, 2009b. Trophic specialization of meiofauna in the Häkon Mosby Mud Volcano: fatty acid biomarker isotope evidence. Marine Biology 156: 1289–1296.

    Article  Google Scholar 

  • Van Rensbergen, P., M. De Batist, J. Klerkx, R. Hus, J. Poort, M. Vanneste, N. Granin, O. Khlystov & P. Krinitsky, 2002. Sublacustrine mud volcanoes and methane seeps caused by dissociation of gas hydrates in Lake Baikal. Geology 30(7): 631–634.

    Article  Google Scholar 

  • Vanreusel, A., A. De Groote, S. Gollner & M. Bright, 2010. Ecology and biogeography of free-living nematodes associated with chemosynthetic environments in the deep sea: a review. PLoS ONE 5(8): e12449.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshii, K., 1999. Stable isotope analysis of benthic organisms in Lake Baikal. Hydrobiologia 11: 145–159.

    Article  Google Scholar 

  • Zakharenko, A. S., T. N. Pimenov, V. G. Ivanov & T. I. Zemskaya, 2015. Detection of methane in the water column at gas and oil seep sites in central and Southern Lake Baikal. Microbiology 84(1): 90–97.

    Article  CAS  Google Scholar 

  • Zakharenko, A. S., Yu. P. Galachyants, I. V. Morozov, O. V. Shubenkova, A. A. Morozov, V. G. Ivanov, N. V. Pimenov, A. Y. Krasnopeev & T. I. Zemskaya, 2019. Bacterial communities in areas of oil and methane seeps in pelagic of Lake Baikal. Microbial Ecology 78(2): 269–285.

    Article  CAS  PubMed  Google Scholar 

  • Zemskaya, T. I., T. Ya Sitnikova, S. I. Kiyashko, G. V. Kalmychkov, T. V. Pogodaeva, I. V. Mekhanikova, T. V. Naumova, O. V. Shubenkova, S. M. Chernitsyna, O. V. Kotsar, E. S. Chernyaev & O. M. Khlystov, 2012. Faunal communities at sites of gas- and oil-bearing fluids in Lake Baikal. Geo-Marine Letters 32(5): 437–451.

    Article  Google Scholar 

  • Zemskaya, T. I., A. V. Lomakina, O. V. Shubenkova, T. V. Pogodaeva, I. V. Morozov, S. M. Chernitsina, T. Ya. Sitnikova, O. M. Khlystov & A. V. Egorov, 2015. Jelly-like microbial mats over subsurface fields of gas hydrates at the St Petersburg methane seep (Central Baikal). Geomicrobiology Journal 32(1): 89–100.

    Article  CAS  Google Scholar 

  • Zeppilli, D., M. Mea, C. Corinaldesi & R. Danovaro, 2011. Mud volcanoes in the Mediterranean Sea hot spots of exclusive meiobenthic species. Progress in Oceanography 91: 260–272.

    Article  Google Scholar 

  • Zeppilli, D., D. Leduc, Ch. Fontanier, D. Fontaneto, S. Fuchs, A. J. Gooday, A. Goineau, J. Ingels, V. N. Ivanenko, R. M. Kristensen, R. C. Neves, N. Sanchez, R. Sandulli, J. Sarrazin, M. V. Sørensen, A. Tasiemski, A. Vanreusel, M. Autret, L. Bourdonnay, M. Claireaux, V. Coquillé, L. De Wever, D. Rachel, J. Marchant, L. Toomey & D. Fernandes, 2018. Characteristics of meiofauna in extreme marine ecosystems: a review. Marine Biodiversity 48: 35–71.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the crew of the research vessel “Vereshchagin” for assistance in sample collection. The service of the deep-water manned Mir submersible was organized and financially supported by the funds of the conservation of Lake Baikal and the Metropole Company. The authors are grateful to V. Nischeta and E. Chernyaev, the pilots of the Mir submersible, Dr. N.V. Bazova for providing the video, to Dr. T.A. Sherbakova for translating of the first version of the manuscript into English; Yu.M. Vitushenko, and the SNAS website for English proofreading of the final version of the manuscript. We also acknowledge the valuable comments and suggestions of anonymous reviewers and associate editor Dr. Stefano Amalfitano. The study was carried out within the State Project Nos. 0279-2021-0006 (Samplings, Measurements of the Methane Concentrations, Microbiological Analysis, and Investigation of Invertebrates) and 0279-2021-0010 (Statistical Analysis) (LIN SB RAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Ya. Sitnikova.

Additional information

Handling Editor: Stefano Amalfitano

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitnikova, T.Y., Naumova, T.V., Mekhanikova, I.V. et al. Sluggish methane discharge and biological traits of benthic invertebrates in Lake Baikal. Hydrobiologia 849, 1947–1968 (2022). https://doi.org/10.1007/s10750-022-04837-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04837-5

Keywords

Navigation