Skip to main content
Log in

Nutrient availability regulates the microbial biomass structure in marine oligotrophic waters

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In oligotrophic oceans, trophic transfer at the base of pelagic food webs is driven by shifts in biomass ratios of plankton microbial groups, which determine dominant nutrition modes, i.e., autotrophy and heterotrophy. Understanding how the physical environment impacts transient spatial patterns of these communities is essential to quantify productivity of plankton food webs. Using data from a coast-offshore field expedition in the Southwestern Tropical Atlantic, we assess the influence of nutrient limitation and contrasting hydrological settings on spatial patterns and biomass ratios of pico- and nanoplankton. The results showed an overall nitrogen-limited nutritional environment that lessens autotrophic growth while favoring the dominance of heterotrophic bacteria biomass. Offshore, this configuration is however altered in the deep chlorophyll maximum due to an enhanced nutrient availability promoted by a shallowing of the nutricline, which favors an increase in picoeukaryotes biomass. Autotrophic cells showed different distributions over the coast-offshore transect. Synechococcus and pigmented nanoflagellates had higher biomass on the shelf, while Prochlorococcus dominated the entire region and picoeukaryotes had higher biomass offshore. Overall, our results pinpoint the importance of heterotrophic biomass in the plankton microbial community, providing novel clues for understanding the carbon transport in oligotrophic marine ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available on SEANOE under the doi: https://doi.org/10.17882/95241; https://doi.org/10.17882/95172; https://doi.org/10.17882/76696.

References

  • Andrade, L., A. M. Gonzalez, J. L. Valentin & R. Paranhos, 2004. Bacterial abundance and production in the southwest Atlantic Ocean. Hydrobiologia 511: 103–111.

    Article  Google Scholar 

  • Araujo, M., C. Limongi, J. Servain, M. Silva, F. S. Leite, D. Veleda & C. A. D. Lentini, 2011. Salinity-induced mixed and barrier layers in the southwestern tropical Atlantic Ocean off the northeast of Brazil. Ocean Science 7: 63–73.

    Article  CAS  ADS  Google Scholar 

  • Assunção, R. V., A. C. Silva, A. Roy, B. Bourlès, C. H. S. Silva, J.-F. Ternon, M. Araujo & A. Bertrand, 2020. 3D characterisation of the thermohaline structure in the southwestern tropical Atlantic derived from functional data analysis of in situ profiles. Progress in Oceanography 187: 102399.

    Article  Google Scholar 

  • Bertrand, A., 2017. ABRACOS 2 cruise, Antea R/V. Sismer. https://campagnes.flotteoceanographique.fr/campagnes/17004100/.

  • Brandini, F. P., 1990. Produção primária e características fotossintéticas do fitoplâncton na região sueste do Brasil. Boletín Del Instituto Español De Oceanografía Sao Paulo 38: 147–159.

    Google Scholar 

  • Brandini, F. P., 2018. Phytoplankton assemblages of the subtropical South West Atlantic: composition and dynamics in relation to physical and chemical processes. In Hoffmeyer, M. S., M. E. Sabatini, F. P. Brandini, D. L. Calliari & N. H. Santinelli (eds), Plankton Ecology of the Southwestern Atlantic: From the Subtropical to the Subantarctic Realm Springer, Cham: 129–148. https://doi.org/10.1007/978-3-319-77869-3_7.

    Chapter  Google Scholar 

  • Buitenhuis, E. T., W. K. W. Li, M. W. Lomas, D. M. Karl, M. R. Landry & S. Jacquet, 2012a. Picoheterotroph (Bacteria and Archaea ) biomass distribution in the global ocean. Earth System Science Data 4: 101–106.

    Article  ADS  Google Scholar 

  • Buitenhuis, E. T., W. K. W. Li, D. Vaulot, M. W. Lomas, M. R. Landry, F. Partensky, D. M. Karl, O. Ulloa, L. Campbell, S. Jacquet, F. Lantoine, F. Chavez, D. Macias, M. Gosselin & G. B. McManus, 2012b. Picophytoplankton biomass distribution in the global ocean. Earth System Science Data Copernicus GmbH 4: 37–46.

    Article  ADS  Google Scholar 

  • Calfee, B. C., L. D. Glasgo & E. R. Zinser, 2022. Prochlorococcus exudate stimulates heterotrophic bacterial competition with rival phytoplankton for available nitrogen. mBio 13: e02571-21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Calleja, M. L., M. I. Ansari, A. Røstad, L. Silva, S. Kaartvedt, X. Irigoien & X. A. G. Morán, 2018. The mesopelagic scattering layer: a hotspot for heterotrophic prokaryotes in the Red Sea Twilight Zone. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2018.00259.

    Article  Google Scholar 

  • Calvo-Díaz, A. & X. A. G. Morán, 2006. Seasonal dynamics of picoplankton in shelf waters of the southern Bay of Biscay. Aquatic Microbial Ecology 42: 159–174.

    Article  Google Scholar 

  • Chen, B., H. Liu, M. R. Landry, M. DaI, B. Huang & J. Sune, 2009. Close coupling between phytoplankton growth and microzooplankton grazing in the western South China Sea. Limnology and Oceanography 54: 1084–1097.

    Article  CAS  ADS  Google Scholar 

  • Christaki, U., F. Van Wambeke & J. Dolan, 1999. Nanoflagellates (mixotrophs, heterotrophs and autotrophs) in the oligotrophic eastern Mediterranean: standing stocks, bacterivory and relationships with bacterial production. Marine Ecology Progress Series 181: 297–307.

    Article  ADS  Google Scholar 

  • Christaki, U., C. Courties, H. Karayanni, A. Giannakourou, C. Maravelias, K. Ar. Kormas, & P. Lebaron, 2002. Dynamic characteristics of Prochlorococcus and Synechococcus consumption by bacterivorous nanoflagellates. Microbial Ecology Springer 43: 341–352.

    Article  CAS  ADS  Google Scholar 

  • Christaki, U., E. Vázquez-Domínguez, C. Courties & P. Lebaron, 2005. Grazing impact of different heterotrophic nanoflagellates on eukaryotic (Ostreococcus tauri) and prokaryotic picoautotrophs (Prochlorococcus and Synechococcus). Environmental Microbiology 7: 1200–1210.

    Article  PubMed  Google Scholar 

  • Clarke, K. R. & R. M. Warwick, 1994. Similarity-based testing for community pattern: the two-way layout with no replication. Marine Biology 118: 167–176.

    Article  Google Scholar 

  • Costa da Silva, A., A. Chaigneau, A. N. Dossa, G. Eldin, M. Araujo & A. Bertrand, 2021. Surface circulation and vertical structure of upper ocean variability around Fernando de Noronha Archipelago and Rocas Atoll during spring 2015 and fall 2017. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2021.598101.

    Article  Google Scholar 

  • Dai, S., Y. Zhao, X. Li, Z. Wang, M. Zhu, J. Liang, H. Liu, Z. Tian & X. Sun, 2020. The seamount effect on phytoplankton in the tropical western Pacific. Marine Environmental Research 162: 105094.

    Article  CAS  PubMed  Google Scholar 

  • del Giorgio, P. A., D. F. Bird, Y. T. Prairie & D. Planas, 1996. Flow cytometric determination of bacterial abundance in lake plankton with the green nucleic acid stain SYTO 13. Limnology and Oceanography 41: 783–789.

    Article  ADS  Google Scholar 

  • Dixon, P., 2003. VEGAN, a package of R functions for community ecology. Journal of Vegetation Science 14: 927–930.

    Article  Google Scholar 

  • Dossa, A. N., A. C. Silva, A. Chaigneau, G. Eldin, M. Araujo & A. Bertrand, 2021. Near-surface western boundary circulation off Northeast Brazil. Progress in Oceanography 190: 102475.

    Article  Google Scholar 

  • Duarte, C. M., A. Regaudie-de-Gioux, J. M. Arrieta, A. Delgado-Huertas & S. Agustí, 2013. The oligotrophic ocean is heterotrophic. Annual Review of Marine Science Annual Reviews 5: 551–569.

    Article  Google Scholar 

  • DuRand, M. D., R. J. Olson & S. W. Chisholm, 2001. Phytoplankton population dynamics at the Bermuda Atlantic Time-series station in the Sargasso Sea. Deep Sea Research Part II: Topical Studies in Oceanography 48: 1983–2003.

    Article  ADS  Google Scholar 

  • Eduardo, L. N., F. Lucena-Frédou, S. Lanco Bertrand, A. S. Lira, M. M. Mincarone, G. T. Nunes, T. Frédou, A. Soares, F. Le Loc’h, L. Pelage, R. Schwamborn, P. Travassos, K. Martins, S. M. A. Lira, G. A. A. Figueiredo, T. V. Júnior, F. Ménard, & A. Bertrand, 2023. From the light blue sky to the dark deep sea: Trophic and resource partitioning between epipelagic and mesopelagic layers in a tropical oceanic ecosystem. The Science of the Total Environment 878: 163098.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Edwards, K. F., 2019. Mixotrophy in nanoflagellates across environmental gradients in the ocean. Proceedings of the National Academy of Sciences of United States of America 116: 6211–6220.

    Article  CAS  ADS  Google Scholar 

  • Farias, G. B., J.-C. Molinero, C. Carré, A. Bertrand, B. Bec & P. A. M. C. Melo, 2022. Uncoupled changes in phytoplankton biomass and size structure in the western tropical Atlantic. Journal of Marine Systems 227: 103696.

    Article  Google Scholar 

  • Feld, C. K., P. Segurado & C. Gutiérrez-Cánovas, 2016. Analysing the impact of multiple stressors in aquatic biomonitoring data: a ‘cookbook’ with applications in R. Science of the Total Environment 573: 1320–1339.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Fenchel, T., 1988. Marine plankton food chains. Annual Review of Ecology and Systematics 19: 19–38.

    Article  Google Scholar 

  • Flombaum, P., J. L. Gallegos, R. A. Gordillo, J. Rincón, L. L. Zabala, N. Jiao, D. M. Karl, W. K. W. Li, M. W. Lomas, D. Veneziano, C. S. Vera, J. A. Vrugt & A. C. Martiny, 2013. Present and future global distributions of the marine Cyanobacteria, Prochlorococcus and Synechococcus. Proceedings of the National Academy of Sciences of the United States of America 110: 9824–9829.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Flombaum, P., W.-L. Wang, F. W. Primeau & A. C. Martiny, 2020. Global picophytoplankton niche partitioning predicts overall positive response to ocean warming. Nature Geoscience 13: 116–120.

    Article  CAS  ADS  Google Scholar 

  • Follett, C. L., S. Dutkiewicz, F. Ribalet, E. Zakem, D. Caron, E. V. Armbrust & M. J. Follows, 2022. Trophic interactions with heterotrophic bacteria limit the range of Prochlorococcus. Proceedings of the National Academy of Sciences of United States of America 119(2): e2110993118.

    Article  CAS  Google Scholar 

  • Frischkorn, K. R., S. T. Haley & S. T. Dyhrman, 2018. Coordinated gene expression between Trichodesmium and its microbiome over day–night cycles in the North Pacific Subtropical Gyre. The ISME Journal 12: 997–1007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuhrman, J., 1992. Bacterioplankton roles in cycling of organic matter: the microbial food web. In Falkowski, P. G., A. D. Woodhead & K. Vivirito (eds), Primary Productivity and Biogeochemical Cycles in the Sea Springer, Boston: 361–383. https://doi.org/10.1007/978-1-4899-0762-2_20.

    Chapter  Google Scholar 

  • Fukuda, R., H. Ogawa, T. Nagata & I. Koike, 1998. Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Applied and Environmental Microbiology 64: 3352–3358.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Gasol, J. M., P. A. del Giorgio & C. M. Duarte, 1997. Biomass distribution in marine planktonic communities. Limnology and Oceanography 42: 1353–1363.

    Article  CAS  ADS  Google Scholar 

  • Gérikas Ribeiro, C., D. Marie, A. Lopes dos Santos, F. Pereira Brandini & D. Vaulot, 2016. Estimating microbial populations by flow cytometry: comparison between instruments: estimating microbial populations by FCM. Limnology and Oceanography: Methods 14: 750–758.

    Google Scholar 

  • Grasshoff, K., M. Ehrhardt & K. Kremling, 1983. Methods of Seawater Analysis, Verlag Chemie, Weinheim:

    Google Scholar 

  • Gu, Z., L. Gu, R. Eils, M. Schlesner, & B. Brors, 2014. Circlize Implements and Enhances Circular Visualization in R. Bioinformatics, vol. 30. Oxford University Press, Oxford: 2811–2812.

  • Guidi, L., S. Chaffron, L. Bittner, D. Eveillard, A. Larhlimi, S. Roux, Y. Darzi, S. Audic, L. Berline, J. Brum, L. P. Coelho, J. C. I. Espinoza, S. Malviya, S. Sunagawa, C. Dimier, S. Kandels-Lewis, M. Picheral, J. Poulain, S. Searson, coordinators Tara Oceans, L. Stemmann, F. Not, P. Hingamp, S. Speich, M. Follows, L. Karp-Boss, E. Boss, H. Ogata, S. Pesant, J. Weissenbach, P. Wincker, S. G. Acinas, P. Bork, C. de Vargas, D. Iudicone, M. B. Sullivan, J. Raes, E. Karsenti, C. Bowler, & G. Gorsky, 2016. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532: 465–470.

  • Hartmann, M., C. Grob, G. A. Tarran, A. P. Martin, P. H. Burkill, D. J. Scanlan & M. V. Zubkov, 2012. Mixotrophic basis of Atlantic oligotrophic ecosystems. Proceedings of the National Academy of Sciences of the United States of America 109: 5756–5760.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Husson, F., J. Josse, S. Le, J. Mazet & M. F. Husson, 2016. Package ‘factominer.’ An R Package Version 96: 698.

    Google Scholar 

  • Ishwaran, H., U. B. Kogalur & M. U. B. Kogalur, 2022. Package ‘randomForestSRC.’ breast 6: 1.

  • Jiao, N., Y. Yang, H. Koshikawa & M. Watanabe, 2002. Influence of hydrographic conditions on picoplankton distribution in the East China Sea. Aquatic Microbial Ecology 30: 37–48.

    Article  Google Scholar 

  • Karus, K., T. Paaver, H. Agasild & P. Zingel, 2014. The effects of predation by planktivorous juvenile fish on the microbial food web. European Journal of Protistology 50: 109–121.

    Article  PubMed  Google Scholar 

  • Kassambara, A. & F. Mundt, 2017. Package ‘factoextra.’ Extract and visualize the results of multivariate data analyses. R Package Version.

  • Kikuchi, R. K. P. & C. Schobbenhaus, 2002. Atol das Rocas, Litoral do Nordeste do Brasil-Único atol do Atlântico Sul Equatorial Ocidental. Sítios Geológicos e Paleontológicos Do Brasil Comissão Brasileira De Sítios Geológicos e Paleobiológicos 1: 379–390.

    Google Scholar 

  • Knoppers, B., W. Ekau & A. G. Figueiredo, 1999. The coast and shelf of east and northeast Brazil and material transport. Geo-Marine Letters 19: 171–178.

    Article  ADS  Google Scholar 

  • Krzywinski, M., J. Schein, İ Birol, J. Connors, R. Gascoyne, D. Horsman, S. J. Jones & M. A. Marra, 2009. Circos: An information aesthetic for comparative genomics. Genome Research 19: 1639–1645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin, A. A., K. R. Mackey & A. C. Martiny, 2019. Marine Cyanobacteria: Prochlorococcus and Synechococcus, Elsevier, New York:

    Google Scholar 

  • Lee, S. & J. A. Fuhrman, 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Applied and Environmental Microbiology 53: 6.

    Article  Google Scholar 

  • Lee, M. D., N. G. Walworth, E. L. McParland, F.-X. Fu, T. J. Mincer, N. M. Levine, D. A. Hutchins & E. A. Webb, 2017. The Trichodesmium consortium: conserved heterotrophic co-occurrence and genomic signatures of potential interactions. The ISME Journal 11: 1813–1824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Q., K. F. Edwards, C. R. Schvarcz, K. E. Selph & G. F. Steward, 2021. Plasticity in the grazing ecophysiology of Florenciella (Dichtyochophyceae), a mixotrophic nanoflagellate that consumes Prochlorococcus and other bacteria. Limnology and Oceanography 66: 47–60.

    Article  CAS  ADS  Google Scholar 

  • Livanou, E., A. Lagaria, I. Santi, M. Mandalakis, A. Pavlidou, K. Lika & S. Psarra, 2019. Pigmented and heterotrophic nanoflagellates: abundance and grazing on prokaryotic picoplankton in the ultra-oligotrophic Eastern Mediterranean Sea. Deep Sea Research Part II: Topical Studies in Oceanography 164: 100–111.

    Article  CAS  ADS  Google Scholar 

  • Loick-Wilde, N., I. Fernández-Urruzola, E. Eglite, I. Liskow, M. Nausch, D. Schulz-Bull, D. Wodarg, N. Wasmund & V. Mohrholz, 2019. Stratification, nitrogen fixation, and cyanobacterial bloom stage regulate the planktonic food web structure. Global Change Biology 25: 794–810.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Lomas, M. W., N. R. Bates, R. J. Johnson, D. K. Steinberg & T. Tanioka, 2022. Adaptive carbon export response to warming in the Sargasso Sea. Nature Communications 13: 1211.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Marañón, E., M. J. Behrenfeld, N. González, B. Mouriño & M. V. Zubkov, 2003. High variability of primary production in oligotrophic waters of the Atlantic Ocean: uncoupling from phytoplankton biomass and size structure. Marine Ecology Progress Series 257: 1–11.

    Article  ADS  Google Scholar 

  • Marañón, E., F. Van Wambeke, J. Uitz, E. S. Boss, C. Dimier, J. Dinasquet, A. Engel, N. Haëntjens, M. Pérez-Lorenzo, V. Taillandier & B. Zäncker, 2021. Deep maxima of phytoplankton biomass, primary production and bacterial production in the Mediterranean Sea. Biogeosciences Copernicus GmbH 18: 1749–1767.

    Article  ADS  Google Scholar 

  • Marie, D., F. Partensky, S. Jacquet & D. Vaulot, 1997. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Applied and Environmental Microbiology 63: 186–193.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Melo, P. A. M. C., X. F. G. Diaz, S. J. Macedo & S. Neumann-Leitão, 2012. Diurnal and spatial variation of the mesozooplankton community in the Saint Peter and Saint Paul Archipelago, Equatorial Atlantic. Marine Biodiversity Records 5: 1–14.

    Article  Google Scholar 

  • Melo, P. A. M. C., M. Melo Júnior, M. Araujo & S. Neumann-Leitão, 2015. The first occurrence of the Order Mormonilloida (Copepoda) in the Tropical Southwest Atlantic Ocean. Anais Da Academia Brasileira De Ciências 87: 233–237.

    Article  PubMed  Google Scholar 

  • Mena, C., P. Reglero, M. Hidalgo, E. Sintes, R. Santiago, M. Martín, G. Moyà & R. Balbín, 2019. Phytoplankton community structure is driven by stratification in the oligotrophic Mediterranean Sea. Frontiers in Microbiology Frontiers. https://doi.org/10.3389/fmicb.2019.01698/full.

    Article  Google Scholar 

  • Mendonça, A., J. Arístegui, J. C. Vilas, M. F. Montero, A. Ojeda, M. Espino & A. Martins, 2012. Is there a seamount effect on microbial community structure and biomass? The case study of Seine and Sedlo Seamounts (Northeast Atlantic). PLoS ONE 7: e29526.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Moreira, D. L., 2017. Ambiente pelágico da bacia de Sergipe-Alagoas. Editora UFS, Aracaju.

  • Nair, S., Z. Zhang, H. Li, H. Zhao, H. Shen, S.-J. Kao, N. Jiao, & Y. Zhang, 2022. Inherent tendency of Synechococcus and heterotrophic bacteria for mutualism on long-term coexistence despite environmental interference. Science Advances American Association for the Advancement of Science 8: 4792.

    Google Scholar 

  • Pelegrí, S., J. Dolan & F. Rassoulzadegan, 1999. Use of high temperature catalytic oxidation (HTCO) to measure carbon content of microorganisms. Aquatic Microbial Ecology 16: 273–280.

    Article  Google Scholar 

  • Rahav, E., B. Herut, D. Spungin, A. Levi, M. R. Mulholland & I. Berman-Frank, 2022. Heterotrophic bacteria outcompete diazotrophs for orthophosphate in the Mediterranean Sea. Limnology and Oceanography 67: 159–171.

    Article  CAS  ADS  Google Scholar 

  • Redfield, A. C., 1963. The influence of organisms on the composition of seawater. In The Sea, vol. 2. Wiley-Interscience, New York: 26–77.

  • Salvetat, J., N. Bez, J. Habasque, A. Lebourges-Dhaussy, C. Lopes, G. Roudaut, M. Simier, P. Travassos, G. Vargas & A. Bertrand, 2022. Comprehensive spatial distribution of tropical fish assemblages from multifrequency acoustics and video fulfils the island mass effect framework. Scientific Reports 12: 8787.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Šantić, D., A. Vrdoljak Tomaš & J. Lušić, 2021. Spatial and temporal patterns of picoplankton community in the Central and Southern Adriatic Sea. In Joksimović, A., M. Đurović, I. S. Zonn, A. G. Kostianoy & A. V. Semenov (eds), The Montenegrin Adriatic Coast: Marine Biology Springer, Cham: 29–51. https://doi.org/10.1007/698_2020_645.

    Chapter  Google Scholar 

  • Serafini, T. Z., G. B. de França & J. M. Andriguetto-Filho, 2010. Ilhas oceânicas brasileiras: biodiversidade conhecida e sua relação com o histórico de uso e ocupação humana. Revista De Gestão Costeira Integrada-Journal of Integrated Coastal Zone Management Associação Portuguesa Dos Recursos Hídricos 10: 281–301.

    Google Scholar 

  • Silva, M. V. B., B. Ferreira, M. Maida, S. Queiroz, M. Silva, H. L. Varona, T. C. M. Araújo & M. Araújo, 2022. Flow-topography interactions in the western tropical Atlantic boundary off Northeast Brazil. Journal of Marine Systems 227: 103690.

    Article  Google Scholar 

  • Stramma, L. & M. England, 1999. On the water masses and mean circulation of the South Atlantic Ocean. Journal of Geophysical Research: Oceans 104: 20863–20883.

    Article  Google Scholar 

  • Susini-Ribeiro, S. M. M., 1999. Biomass distribution of pico-, nano-and microplankton on the continental shelf of Abrolhos, East Brazil. Archive of Fishery and Marine Research 47: 271–284.

    Google Scholar 

  • Tchamabi, C. C., M. Araujo, M. Silva & B. Bourlès, 2017. A study of the Brazilian Fernando de Noronha island and Rocas atoll wakes in the tropical Atlantic. Ocean Modelling 111: 9–18.

    Article  ADS  Google Scholar 

  • Tosetto, E. G., A. Bertrand, S. Neumann-Leitão, A. Costa da Silva & M. Nogueira Júnior, 2021. Spatial patterns in planktonic cnidarian distribution in the western boundary current system of the tropical South Atlantic Ocean. Journal of Plankton Research. https://doi.org/10.1093/plankt/fbaa066.

    Article  Google Scholar 

  • Traboni, C., A. Calbet & E. Saiz, 2021. Mixotrophy upgrades food quality for marine calanoid copepods. Limnology and Oceanography 66: 4125–4139.

    Article  CAS  ADS  Google Scholar 

  • Tsai, A.-Y., G.-C. Gong, C.-C. Chung & Y.-T. Huang, 2018. Different impact of nanoflagellate grazing and viral lysis on Synechococcus spp. and picoeukaryotic mortality in coastal waters. Estuarine, Coastal and Shelf Science 209: 1–6.

    Article  ADS  Google Scholar 

  • Visintini, N., A. C. Martiny & P. Flombaum, 2021. Prochlorococcus, Synechococcus, and picoeukaryotic phytoplankton abundances in the global ocean. Limnology and Oceanography Letters. https://doi.org/10.1002/lol2.10188.

    Article  Google Scholar 

  • Wang, F., Y. Wei, J. Yue, C. Guo & J. Sun, 2021. Distribution and environmental impact factors of picophytoplankton in the East China Sea during spring. Journal of Oceanology and Limnology. https://doi.org/10.1007/s00343-020-0230-3.

    Article  Google Scholar 

  • Yingling, N., T. B. Kelly, T. A. Shropshire, M. R. Landry, K. E. Selph, A. N. Knapp, S. A. Kranz & M. R. Stukel, 2022. Taxon-specific phytoplankton growth, nutrient utilization and light limitation in the oligotrophic Gulf of Mexico. Journal of Plankton Research 44: 656–676.

    Article  CAS  Google Scholar 

  • Zhang, Z., S. Nair, L. Tang, H. Zhao, Z. Hu, M. Chen, Y. Zhang, S.-J. Kao, N. Jiao & Y. Zhang, 2021. Long-term survival of Synechococcus and heterotrophic bacteria without external nutrient supply after changes in their relationship from antagonism to mutualism. mBio 12: e01614-21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zubkov, M. V., M. A. Sleigh, P. H. Burkill & R. J. G. Leakey, 2000. Picoplankton community structure on the Atlantic Meridional Transect: a comparison between seasons. Progress in Oceanography 45: 369–386.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We wish to express our thanks to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) and the CAPES-PRINT program for the concession of the first author’s scholarships (88882.379302/2019-01; 88887.685774/2022-00), and the IMAGO lab who realized the HPLC and nutrients analysis. We acknowledge the French oceanographic fleet for funding the survey ABRACOS and the officers, crew, and scientific team of the R/V Antea for their contribution to the success of the operations.

Funding

This work is a contribution to the INCT BAA (https://www.bioamazoniaazul.com), LMI TAPIOCA (www.tapioca.ird.fr), CAPES/COFECUB Program (88881.142689/2017-01), the European Union’s Horizon 2020 projects PADDLE (Grant Agreement No. 73427) and TRIATLAS (Grant Agreement No. 817578).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Bittencourt Farias.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors followed all applicable international, national, and/or institutional guidelines for animal testing, animal care, and use of animals. The authors have obtained all necessary permits for sampling and observational field studies from the competent authorities.

Additional information

Handling editor: Stefano Amalfitano

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farias, G.B., Melo, P.A.M.d.C., López-Abbate, M.C. et al. Nutrient availability regulates the microbial biomass structure in marine oligotrophic waters. Hydrobiologia 851, 1923–1938 (2024). https://doi.org/10.1007/s10750-023-05427-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05427-9

Keywords

Navigation