Skip to main content
Log in

X-ray diffraction, Mössbauer spectroscopy, neutron diffraction, optical absorption and ab-initio calculation of magnetic process in orthorhombic YFexCr(1-x)O3 (0 ≤ x ≤ 1) compounds

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

YFexCr(1-x)O3 (0 ≤ x ≤ 1) compounds prepared by autocombustion were studied with X-ray and neutron powder diffraction, Mössbauer spectroscopy and ab-initio electronic structure calculations to try to understand the interplay of magnetic order and structural parameters as a function of doping in this multiferroic material. All samples exhibit the orthorhombic nuclear structure (space group symmetry Pnma) and the cell parameters vary continuously as a function of doping. In the neutron powder diffraction patterns it was observed that in addition to the Pnma nuclear structure peaks reflections are seen in all samples which arise from magnetic order. These peaks can be indexed using the nuclear unit cell indicating an ordering vector of k = (0,0,0). Using representational analysis and Rietveld refinements the magnetic structure was determined to be Pn’ma’ and the mean magnetic moment per transition metal atom was observed to decrease continuously from Fe to Cr. For compounds with x > 0.25 a weak ferromagnetic contribution is also present which is due to a small canting of the moments out of the basal plane. The Mössbauer spectra corroborate the NPD results with all samples showing single magnetic sextets at 4.2 K. The energy gap and the main direct interband transition of the endmember samples were obtained by optical absorption measurements. These optical data were analyzed with the help of DFT band structure calculation using the GGA-PBE + U approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sando, D., et al.: Nat. Mater. 12, 641–646 (2013)

    Article  ADS  Google Scholar 

  2. Neusser, S., Grundler, D.: Magnonics: Spin Waves on the Nanoscale. Adv. Mater. 21, 2927–2932 (2009)

    Article  Google Scholar 

  3. Dahmani, A., et al.: Mat. Chem. and Phys. 77, 912 (2002)

    Article  Google Scholar 

  4. Serrao, C.R., Kundu, A.K., Krupanidhi, S.B., Waghmare, U.V., Rao, C.N.R.: BiferroicYCrO3. Phys. Rev. B: Condens. Matter Mater. Phys. 72, 220101 (2005)

    Article  ADS  Google Scholar 

  5. Ramesha, K., Llobet, A., Th, P., Serrao, C.R., Rao, C.: Observation of local non-centrosymmetry in weakly biferroic YCrO3. N. R.: J. Phys.: Condens. Matter. 19, 102202 (8pp) (2007)

    Article  ADS  Google Scholar 

  6. Nair, V., Das, A., Subramanian, V., Santhosh, P.N.: Magnetic structure and magnetodielectric effect of YFe0.5Cr0.5O3. J. Appl. Phys. 13, 213907 (2013). https://doi.org/10.1063/1.4808459

    Article  ADS  Google Scholar 

  7. Calder, S., An, K., Boehler, R., dela Cruz, C.R., Frontzek, M.D., Guthrie, M., Haberl, B., Huq, A., Kimber, S.A.J., Liu, J., Molaison, J.J., Neuefeind, J., Page, K., dos Santos, A.M., Taddei, K.M., Tulk, C., Tucker, M.G.: A suite-level review of the neutron powder diffraction instruments at Oak Ridge National Laboratory. Rev. Sci. Instrum. 89, 092701 (2018)

    Article  ADS  Google Scholar 

  8. Rodríguez-Carvajal, J.: Recent advances in magnetic structure determination by neutron powder diffraction. Physica B. 192, 55–69 (1993)

    Article  ADS  Google Scholar 

  9. Wills, A.: A new protocol for the determination of magnetic structures using simulated annealing and representational analysis (SARAh). Physica B Condensed Matter. 276-278, 680–681 (2000)

    Article  ADS  Google Scholar 

  10. Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Buongiorno Nardelli, M., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Dal Corso, A., de Gironcoli, S., Delugas, P., DiStasio Jr., R.A., Ferretti, A., Floris, A., Fratesi, G., Fugallo, G., Gebauer, R., Gerstmann, U., Giustino, F., Gorni, T., Jia, J., Kawamura, M., Ko, H.Y., Kokalj, A., Küçükbenli, E., Lazzeri, M., Marsili, M., Marzari, N., Mauri, F., Nguyen, N.L., Nguyen, H.V., Otero-de-la-Roza, A., Paulatto, L., Poncé, S., Rocca, D., Sabatini, R., Santra, B., Schlipf, M., Seitsonen, A.P., Smogunov, A., Timrov, I., Thonhauser, T., Umari, P., Vast, N., Wu, X., Baroni, S.: Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter. 29, 465901 (2017)

    Article  Google Scholar 

  11. Wollan, E.O., Koehler, W.C.: Neutron Diffraction Study of the Magnetic Properties of the Series of Perovskite-Type Compounds[(1−x)La, xCa]MnO3. Phys. Rev. 100, 545–563 (1955)

    Article  ADS  Google Scholar 

  12. Treves, D.: Studies on Orthoferrites at the Weizmann Institute of Science. J. Appl. Phys. 36, 1033–1039 (1965). https://doi.org/10.1063/1.1714088

    Article  ADS  Google Scholar 

  13. Pankove J. I.: Optical Processes in Semiconductors, Ed. Prentice Hall, 1971

  14. Tauc, J., Grigorovici, R., Vancu, A.: Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi B. 15(2), 627–637 (1966). https://doi.org/10.1002/pssb.19660150224

    Article  ADS  Google Scholar 

  15. Butler, M.A., Ginley, D.S., Eibschütz, M.: J. Appl. Phys. 48(7), (July 1977)

  16. Krishnan, S., Suchand Sandeep, C.S., Philip, R., Kalarikkal, N.: Two-photon assisted excited state absorption in multiferroic YCrO3 nanoparticles. Chem. Phys. Lett. 529, 59–63 (2012)

    Article  ADS  Google Scholar 

  17. Perdew, J.P., et al.: Phys. Rev. B46. 6671–6687 (1992)

  18. Mathur, S., Veith, M., Rapalaviciute, R., Shen, H., Goya, G.F., Martins Filho, W.L., Berquo, T.S.: Molecule Derived Synthesis of Nanocrystalline YFeO3and Investigations on Its Weak Ferromagnetic Behavior. Chem. Mater. 16, 1906–1913 (2004)

    Article  Google Scholar 

  19. Dasari, N., Mandal, P., Sundaresan, A., Vidhyadhiraja, N.S.: Weak ferromagnetism and magnetization reversal in YFe1−xCrxO3. EPL. 99, 17008 (2012)

    Article  ADS  Google Scholar 

  20. Stoeffler, D., Chaker, Z.: First principles study of the electronic structure and magnetic properties of YFeO3 oxide. J. Magn. Magn. Mater. 442, 255–264 (2017). https://doi.org/10.1016/j.jmmm.2017.06.129

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Prof. Dr. F. Wagner for his support in the measurement of the Mössbauer spectra from the Technische Universität München, Germany and Dr. Karla Santacruz G. from the Universidad de Sonora, Mexico for the TEM images. We also appreciate Prof. Manuel Hernández from the Universidad Nacional Autónoma de México (UNAM) for the optical absorption measurements. A portion of this research used resources at the High Flux Isotope Reactor, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Salazar-Rodriguez.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the 16th Latin American Conference on the Applications of the Mössbauer Effect (LACAME 2018), 18-23 November 2018, Santiago de Chile, Chile

Edited by Carmen Pizarro Arriagada

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salazar-Rodriguez, R., Aliaga-Guerra, D. & Taddei, K.M. X-ray diffraction, Mössbauer spectroscopy, neutron diffraction, optical absorption and ab-initio calculation of magnetic process in orthorhombic YFexCr(1-x)O3 (0 ≤ x ≤ 1) compounds. Hyperfine Interact 240, 82 (2019). https://doi.org/10.1007/s10751-019-1619-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-019-1619-2

Keywords

Navigation