Skip to main content
Log in

Endoplasmic Reticulum Stress-Activated Glycogen Synthase Kinase 3β Aggravates Liver Inflammation and Hepatotoxicity in Mice with Acute Liver Failure

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Endoplasmic reticulum stress (ER stress) has been increasingly recognized as an important mechanism in various liver diseases. However, its intrinsic physiological role in acute liver failure (ALF) remains largely undetermined. This study aimed to examine how ER stress orchestrates glycogen synthase kinase 3β (GSK3β) and inflammation to affect ALF. In a murine ALF model induced by d-galactosamine (d-GalN) and lipopolysaccharide (LPS), 4-phenylbutyric acid (4-PBA) is to be administered to relieve ER stress. The lethality rate, liver damage, cytokine expression, and the activity of GSK3β were evaluated. How to regulate LPS-induced inflammation and TNF-α-induced hepatocyte apoptosis by ER stress was investigated in vitro. In vivo, ER stress was triggered in the liver with the progression of mice ALF model. ER stress was essential for the development of ALF because ER stress inhibition by 4-PBA ameliorated the liver damage through decreasing liver inflammation and hepatocyte apoptosis. 4-PBA also decreased GSK3β activity in the livers of ALF mice. In vitro, ER stress induced by tunicamycin synergistically increased LPS-triggered pro-inflammatory cytokine induction and promoted the activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathway in bone marrow-derived macrophages; moreover, tunicamycin also cooperated with TNF-α to increase hepatocyte apoptosis. ER stress promoted LPS-triggered inflammation depending on GSK3β activation because inhibition of GSK3β by SB216763, the specific inhibitor of GSK3β, resulted in downregulation of pro-inflammatory genes. ER stress contributes to liver inflammation and hepatotoxicity in ALF, particularly by regulating GSK3β, and is therefore a potential therapeutic target for ALF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ALF:

Acute liver failure

ER:

Endoplasmic reticulum

ER stress:

Endoplasmic reticulum stress

GSK3β:

Glycogen synthase kinase 3β

d-GalN:

d-galactosamine

LPS:

Lipopolysaccharide

UPR:

Unfolded protein response

Grp78:

Glucose-regulated protein 78

Grp94:

Glucose-regulated protein 94

HPRT:

Hypoxanthine-guanine phosphoribosyltransferase

IP3R: inositol 1:

4, 5-trisphosphate receptors

PARP:

Poly ADP ribose polymerase

NF-κB:

Nuclear factor-κB

MAPK:

Mitogen-activated protein kinase

IkB-α:

IkappaB-alpha

TNF-α:

Tumor necrosis factor-α

IL-1β:

Interleukin1β

IL-6:

Interleukin6

4-PBA:

4-phenylbutyrate

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

MPO:

Myeloperoxidase

ELISA:

Enzyme-linked immunosorbent assay

TLR4:

Toll-like receptor 4

BMM:

Bone marrow-derived macrophage

PAGE:

Polyacrylamide gel electrophoresis

TM:

Tunicamycin

References

  1. Hoofnagle, J.H., R.L.J. Carithers, C. Shapiro, and N. Ascher. 1995. Acute hepatic failure: summary of a workshop. Hepatology 21: 240–252.

    PubMed  CAS  Google Scholar 

  2. Riordan, S.M., and R. Williams. 2003. Mechanisms of hepatocyte injury, multiorgan failure, and prognostic criteria in acute liver failure. Seminars in Liver Disease 23: 203–215.

    Article  PubMed  CAS  Google Scholar 

  3. Kaufman, R.J. 1999. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes and Development 13: 1211–1233.

    Article  PubMed  CAS  Google Scholar 

  4. Ron, D., and P. Walter. 2007. Signal integration in the endoplasmic reticulum unfolded protein response. Nature Reviews Molecular Cell Biology 8: 519–529.

    Article  PubMed  CAS  Google Scholar 

  5. Todd, D.J., A.H. Lee, and L.H. Glimcher. 2008. The ERS response in immunity and autoimmunity. Nature Reviews Immunology 8: 663–674.

    Article  PubMed  CAS  Google Scholar 

  6. Lin, J.H., P. Walter, and T.S. Yen. 2008. Endoplasmic reticulum stress in disease pathogenesis. Annual Review of Pathology 3: 399–425.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Little, E., M. Ramakrishnan, B. Roy, G. Gazit, and A.S. Lee. 1994. The glucose-regulated proteins (GRP78 and GRP94): functions, gene regulation, and applications. Critical Reviews in Eukaryotic Gene Expression 4: 1–18.

    Article  PubMed  Google Scholar 

  8. Xu, C., M.B. Bailly, and J.C. Reed. 2005. Endoplasmic reticulum stress: cell life and death decisions. Journal of Clinical Investigation 115: 2656–2664.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Inki, K., J.X. Wen, and C.R. John. 2008. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nature Reviews Drug Discovery 7: 1013–30.

    Article  CAS  Google Scholar 

  10. Zhang, K., and R.J. Kaufman. 2008. From endoplasmic-reticulum stress to the inflammatory response. Nature 24: 455–62.

    Article  CAS  Google Scholar 

  11. Nürnberger, S., I. Miller, J.C. Duvigneau, E.T. Kavanagh, S. Gupta, R.T. Hartl, et al. 2012. Impairment of endoplasmic reticulum in liver as an early consequence of the systemic inflammatory response in rats. American Journal of Physiology - Gastrointestinal and Liver Physiology 303: G1373–1383.

    Article  PubMed  CAS  Google Scholar 

  12. Liu, J., R. Feng, Q. Cheng, L. Bai, X. Shen, F. Gao, et al. 2012. Endoplasmic reticulum stress modulates liver inflammatory immune response in the pathogenesis of liver ischemia and reperfusion injury. Transplantation 94: 211–217.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Martinon, F., X. Chen, A.H. Lee, and L.H. Glimcher. 2010. TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nature Immunology 11: 411–418.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Smith, J.A., M.J. Turner, M.L. DeLay, E.I. Klenk, D.P. Sowders, and R.A. Colbert. 2008. Endoplasmic reticulum stress and the unfolded protein response are linked to synergistic IFN-beta induction via X-box binding protein 1. European Journal of Immunology 38: 1194–1203.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Zeng, L., Y.P. Liu, H. Sha, H. Chen, L. Qi, and J.A. Smith. 2010. XBP-1 couples endoplasmic reticulum stress to augmented IFN-beta induction via a cis-acting enhancer in macrophages. Journal of Immunology 185: 2324–2330.

    Article  CAS  Google Scholar 

  16. Martin, M., K. Rehani, R.S. Jope, and S.M. Michalek. 2005. Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nature Immunology 6: 777–784.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Beurel, Eléonore, and Richard S. Jope. 2006. The paradoxical pro- and anti-apoptotic actions of GSK-3 in the intrinsic and extrinsic apoptosis signaling pathways. Progress in Neurobiology 79: 173–189.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Chen, L., F. Ren, H. Zhang, T. Wen, Z. Piao, L. Zhou, et al. 2012. Inhibition of GSK3β ameliorates D-GalN/LPS-induced liver injury by reducing ERS-triggered apoptosis. Plos One 7: e45202.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Linlin, W., R. Feng, Z. Xiangying, Wen Tao, Shi Hongbo, Zheng Sujun, et al. 2014. Oxidative stress promotes D-GalN/LPS-induced acute hepatotoxicity by increasing glycogen synthase kinase 3β activity. Inflammation Research 63: 485–494.

    Article  CAS  Google Scholar 

  20. Tabas, I., and D. Ron. 2011. Integrating the mechanisms of apoptosis induced by ERS. Nature Cell Biology 13: 184–190.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Mignon, A., N. Rouquet, M. Fabre, S. Martin, J.C. Pagès, J.F. Dhainaut, et al. 1999. LPS challenge in D-galactosamine-sensitized mice accounts for caspase-dependent fulminant hepatitis, not for septic shock. American Journal of Respiratory and Critical Care Medicine 159: 1308–1315.

    Article  PubMed  CAS  Google Scholar 

  22. Nakama, T., S. Hirono, A. Moriuchi, S. Hasuike, K. Nagata, T. Hori, et al. 2001. Etoposide prevents apoptosis in mouse liver with D-GalN/LPS-induced fulminant hepatic failure resulting in reduction of lethality. Hepatology 33: 1441–1450.

    Article  PubMed  CAS  Google Scholar 

  23. Suzuki, S., L.H. Toledo-Pereyra, F.J. Rodriguez, and D. Cejalvo. 1993. Neutrophil infiltration as an important factor in liver ischemia and reperfusion injury. Modulating effects of FK506 and cyclosporine. Transplantation 55: 1265–1272.

    Article  PubMed  CAS  Google Scholar 

  24. Klaunig, J.E., P.J. Goldblatt, D.E. Hinton, M.M. Lipsky, J. Chacko, and B.F. Trump. 1981. Mouse liver cell culture. I. Hepatocyte isolation. In Vitro 17: 913–925.

    Article  PubMed  CAS  Google Scholar 

  25. Jeschke, M.G., C.C. Finnerty, D.N. Herndon, J. Song, D. Boehning, R.G. Tompkins, et al. 2012. Severe injury is associated with insulin resistance, endoplasmic reticulum stress response, and unfolded protein response. Annals of Surgery 255: 370–378.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Jeschke, M.G., G.G. Gauglitz, J. Song, G.A. Kulp, C.C. Finnerty, R.A. Cox, et al. 2009. Calcium and ER stress mediate hepatic apoptosis after burn injury. Journal of Cellular and Molecular Medicine 13: 1857–1865.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Ozcan, U., E. Yilmaz, L. Ozcan, M. Furuhashi, E. Vaillancourt, R.O. Smith, et al. 2006. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313: 1137–1140.

    Article  PubMed  CAS  Google Scholar 

  28. Zode, G.S., M.H. Kuehn, D.Y. Nishimura, C.C. Searby, K. Mohan, S.D. Grozdanic, et al. 2011. Reduction of ER stress via a chemical chaperone prevents disease phenotypes in a mouse model of primary open angle glaucoma. Journal of Clinical Investigation 121: 3542–3553.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Gyongyi, S., M. Pranoti, and D. Angela. 2007. Innate immune response and hepatic inflammation. Seminars in Liver Disease 27: 339–350.

    Article  CAS  Google Scholar 

  30. Streetz, K., L. Leifeld, D. Grundmann, J. Ramakers, K. Eckert, U. Spengler, et al. 2000. Tumor necrosis factor-alpha in the pathogenesis of human and murine fulminant hepatic failure. Gastroenterology 119: 446–460.

    Article  PubMed  CAS  Google Scholar 

  31. Bradham, C.A., J. Plümpe, M.P. Manns, D.A. Brenner, and C. Trautwein. 1998. Mechanisms of hepatic toxicity I: TNF-induced liver injury. American Journal of Physiology 275: G387–392.

    PubMed  CAS  Google Scholar 

  32. Zimmermann, H.W., C. Trautwein, and F. Tacke. 2012. Functional role of monocytes and macrophages for the inflammatory response in acute liver injury. Frontiers in Physiology 3: 56. doi:10.3389/fphys.2012.00056.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Wagner, J.G., and R.A. Roth. 1999. Neutrophil migration during endotoxemia. Journal of Leukocyte Biology 66: 10–24.

    PubMed  CAS  Google Scholar 

  34. Su, G.L. 2002. Lipopolysaccharides in liver injury: molecular mechanisms of Kupffer cell activation. American Journal of Physiology - Gastrointestinal and Liver Physiology 283: G256–265.

    Article  PubMed  CAS  Google Scholar 

  35. Matsuno, K., H. Nomiyama, H. Yoneyama, and R. Uwatoku. 2002. Kupffer cell-mediated recruitment of dendritic cells to the liver crucial for a host defense. Developmental Immunology 9: 143–149.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Klugewitz, K., D.H. Adams, M. Emoto, K. Eulenburg, and A. Hamann. 2004. The composition of intrahepatic lymphocytes: shaped by selective recruitment? Trends in Immunology 25: 590–594.

    Article  PubMed  CAS  Google Scholar 

  37. Bertus, E., C.A. Simon, J.W. Stephen, A.P. Holt, and D.H. Adams. 2007. Immune-mediated liver injury. Seminars in Liver Disease 27: 351–366.

    Article  CAS  Google Scholar 

  38. Beurel, E., S.M. Michalek, and R.S. Jope. 2010. Innate and adaptive immune responses regulated by glycogen synthase kinase-3 (GSK3). Trends in Immunology 31: 24–31.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Hoeflich, K.P., J. Luo, E.A. Rubie, M.S. Tsao, O. Jin, and J.R. Woodgett. 2000. Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 406: 86–90.

    Article  PubMed  CAS  Google Scholar 

  40. Cao, J., X.X. Feng, L. Yao, B. Ning, Z.X. Yang, D.L. Fang, et al. 2014. Saturated free fatty acid sodium palmitate-induced lipoapoptosis by targeting glycogen synthase kinase-3β activation in human liver cells. Digestive Diseases and Sciences 59: 346–357.

    Article  PubMed  CAS  Google Scholar 

  41. Choi, S.E., Y. Kang, H.J. Jang, H.C. Shin, H.E. Kim, H.S. Kim, et al. 2007. Involvement of glycogen synthase kinase-3beta in palmitate-induced human umbilical vein endothelial cell apoptosis. Journal of Vascular Research 44: 365–374.

    Article  PubMed  CAS  Google Scholar 

  42. Shinohara, M., M.D. Ybanez, S. Win, T.A. Than, S. Jain, W.A. Gaarde, et al. 2010. Silencing glycogen synthase kinase-3beta inhibits acetaminophen hepatotoxicity and attenuates JNK activation and loss of glutamate cysteine ligase and myeloid cell leukemia sequence 1. Journal of Biological Chemistry 285: 8244–8255.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Wang, H., C.A. Garcia, K. Rehani, C. Cekic, P. Alard, D.F. Kinane, et al. 2008. IFN-beta production by TLR4-stimulated innate immune cells is negatively regulated by GSK3β. Journal of Immunology 181: 6797–6802.

    Article  CAS  Google Scholar 

  44. Kim, A.J., Y. Shi, R.C. Austin, and G.H. Werstuck. 2005. Valproate protects cells from ER stress-induced lipid accumulation and apoptosis by inhibiting glycogen synthase kinase-3. Journal of Cell Science 118: 89–99.

    Article  PubMed  CAS  Google Scholar 

  45. Srinivasan, S., M. Ohsugi, Z. Liu, S. Fatrai, E. Bernal-Mizrachi, and M.A. Permutt. 2005. ERS-induced apoptosis is partly mediated by reduced insulin signaling through phosphatidylinositol 3-Kinase/Akt and increased GSK3β in mouse insulinoma cells. Diabetes 54: 968–975.

    Article  PubMed  CAS  Google Scholar 

  46. Takadera, T., R. Yoshikawa, and T. Ohyashiki. 2006. Thapsigargin-induced apoptosis was prevented by GSK3 inhibitors in PC12 cells. Neuroscience Letters 408: 124–128.

    Article  PubMed  CAS  Google Scholar 

  47. Zhai, P., S. Sciarretta, J. Galeotti, M. Volpe, and J. Sadoshima. 2011. Differential roles of GSK-3β during myocardial ischemia and ischemia/reperfusion. Circulation Research 109: 502–511.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Mingjing, J., R. Feng, Z. Li, Z. Xiangying, Z. Li, W. Tao, et al. 2014. Peroxisome proliferator-activated receptor α activation attenuates inflammatory response to protect liver from acute failure by promoting autophagy pathway. Cell Death & Disease 5: e1397. doi:10.1038/cddis.2014.361.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the China National Key Project of the Twelfth Five-year Plan (2012ZX10002004-006, 2012ZX10004904-003-001, 2013ZX10002002-006-001, 2012ZX10002005-003-003), the National Natural Science Foundation of China (81270532, 81372094,81300349), the Beijing Excellent Talents Training Funding (2011D003034000022), the Technology Foundation for Selected Overseas Chinese Scholar, the Ministry of Personnel of Beijing (2012), the Applied Research for the Clinical Characteristics of Capital (Z1211070010112167), and the Cooperation Research Project of CMU and Clinical (13JL33).

Conflict of Interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheling Wang or Zhongping Duan.

Additional information

Feng Ren and Li Zhou have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, F., Zhou, L., Zhang, X. et al. Endoplasmic Reticulum Stress-Activated Glycogen Synthase Kinase 3β Aggravates Liver Inflammation and Hepatotoxicity in Mice with Acute Liver Failure. Inflammation 38, 1151–1165 (2015). https://doi.org/10.1007/s10753-014-0080-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-014-0080-2

KEY WORDS

Navigation