Skip to main content
Log in

Psychotria leiocarpa Extract and Vincosamide Reduce Chemically-Induced Inflammation in Mice and Inhibit the Acetylcholinesterase Activity

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Species from Psychotria are used in folk medicine against inflammatory diseases, respiratory disturbances, and anti-hallucinogenic. In the present study, the compound vincosamide (PL-1) was identified for the first time in methanolic extract of the Psychotria leiocarpa (ME-PL) leaves, as well as the anti-inflammatory and anticholinesteric effects in rodents and molecular docking simulations. The fractionation of the chloroform fraction (CF-PL) through chromatographic methods afforded the known compound PL-1. The anti-inflammatory activity of the ME-PL (30, 100, and 300 mg/kg) and PL-1 (3, 30, and 100 mg/kg) was analyzed using experimental models: paw edema, pleurisy, and mechanical and thermal hyperalgesia induced by carrageenan. The anticholinesterase activity of the ME-PL (30 and 100 mg/kg) and PL-1 (30 mg/kg) was showed by acetylcholinesterase (AChE) inhibitory in brain structures. The molecular docking simulations were performed using Molegro Virtual Docker v6.0. Overall, the results indicated that ME-PL and PL-1 demonstrated an anti-edematogenic effect in Cg-induced paw edema, leukocyte migration in the pleurisy model, and significantly reduced mechanical hyperalgesia, cold response to acetone in mice. The samples exhibited maximal inhibition of enzyme acetylcholinesterase (AChE) in the frontal cortex. The molecular coupling of PL-1 with the AChE showed significant interactions with the catalytic and peripheral site, corroborating the activity presented in the inhibition assay. The acute administration of ME-PL did not cause signs of toxicity in the treated animals. The results showed that P. leiocarpa inhibited AChE and anti-inflammatory activity, and alkaloid vincosamide could be responsible, at least in part, for the observed effects, supporting the popular use of this genus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Smith, L.B., and R.J. Downs. 1956. Resumo preliminar das rubiáceas de Santa Catarina. Sellowia 7: 13–86.

    Google Scholar 

  2. Souza, R.K.D., A.N.A.M. Mendonça, and M.A.P. da Silva. 2013. Aspectos etnobotânicos, fitoquímicos e farmacológicos de espécies de Rubiaceae no Brasil. Revista Cubana de Plantas Medicinales 18: 140–156.

    Google Scholar 

  3. Grenand, P., C. Moretti, and H. Jacquemim. 1987. Pharmacopées traditionelles en Guyane, 379–382. Paris: Editions de I’ORSTON.

    Google Scholar 

  4. Schultes, R.E., and R.F. Rauffauf. 1990. The healing forest. Medicinal and toxic plants of the Northwest Amazonia, 392–396. Portland: Dioscorides Press https://trove.nla.gov.au/version/19482730.

    Google Scholar 

  5. Caballero-George, C., P.M.L. Vanderheyden, P.N. Solis, L. Pieters, A.A. Shahat, M.P. Gupta, G. Vauquelin, and A.J. Vlietnick. 2001. Biological screening of selected medicinal Panamenian plants by radioligand-binding techniques. Phytomedicine 8: 59–70. https://doi.org/10.1078/0944-7113-00011.

    Article  CAS  PubMed  Google Scholar 

  6. Lopes, S.O. 1998. Análise química e cultivo in vitro de Psychotria leiocarpa Cham. et Schlecht. e Psychotria carthagenensis Jacq. (Rubiaceae). Master Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.

  7. Matsuura, H.N., and A.G. Fett-Neto. 2013. The major indole alkaloid N, β-D-glucopyranosyl vincosamide from leaves of Psychotria leiocarpa Cham. & Schltdl. Is not an antifeedant but shows broad antioxidant activity. Natural Product Research 27: 402–411. https://doi.org/10.1080/14786419.2012.715293.

    Article  CAS  PubMed  Google Scholar 

  8. Lopes, S., G.L. Von Poser, V.A. Kerber, F.M. Farias, E.L. Konrath, P. Moreno, M.E. Sobral, J.A.S. Zuanazzi, and A.T. Henriques. 2004. Taxonomic significance of alkaloids and iridoid glucosides in the tribe Psychotrieae (Rubiaceae). Biochemical Systematics and Ecology 32: 1187–1195. https://doi.org/10.1016/j.bse.2004.04.015.

    Article  CAS  Google Scholar 

  9. Andrade, J.M.M., R. Biegelmeyer, C.A.G. Xavier, S.A.L. Bordignon, P.R.H. Moreno, J.A.S. Zuanazzi, A.T. Henriques, and M.A. Apel. 2010. Essential oil constituents of Psychotria leiocarpa. Chemistry of Natural Compounds 46: 649–650. https://doi.org/10.1007/s10600-010-9702-6.

    Article  CAS  Google Scholar 

  10. Moraes, T.M.S., M.H. de Araújo, N.R. Bernardes, D.B. de Oliveira, E.B. Lasunskaia, M.F. Muzitano, and M. da Cunha. 2011. Antimycobacterial activity and alkaloid prospection of Psychotria species (Rubiaceae) from the Brazilian Atlantic Rainforest. Planta Medica 77: 964–970. https://doi.org/10.1055/s-0030-1250656.

    Article  CAS  PubMed  Google Scholar 

  11. Elisabetsky, E., T.A. Amador, M.B. Leal, D.S. Nunes, A.C.T. Carvalho, and L. Verotta. 1997. Merging ethnopharmacology with chemotaxonomy: an approach to unveil bioactive natural products. The case of Psychotria alkaloids as potential analgesics. Ciência e Cultura 49: 378–385.

    CAS  Google Scholar 

  12. McKenna, D.J., G.N.T. Towers, and F. Abbot. 1984. Monoamine oxidase inhibitors in South American hallucinogenic plants: trypatamine and β-carboline constituents of Ayahusca. Journal of Ethnopharmacology 10: 195–223. https://doi.org/10.1016/0378-8741(84)90003-5.

    Article  CAS  PubMed  Google Scholar 

  13. Formagio, A.S.N., C.R.F. Volobuff, M. Santiago, C.A.L. Cardoso, M.C. Vieira, and Z.V. Pereira. 2014. Evaluation of antioxidante activity, total flavonoids, tannins and phenolic compounds in Psychotria leaf extracts. Antioxidants 3: 745–757. https://doi.org/10.3390/antiox3040745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ribeiro, M.A.S., C.M.B. Gomes, A.S.N. Formagio, Z.V. Pereira, U.Z. Melo, E.A. Basso, W.F. da Costa, D.C. Baldoqui, and M.H. Sarragiotto. 2016. Structural characterization of dimeric índole alkaloids from Psychotria brachybotrya by NMR spectroscopy and theoretical calculations. Tetrahedron Letters 57: 1331–1334. https://doi.org/10.1016/j.tetlet.2016.02.040.

    Article  CAS  Google Scholar 

  15. Goschorska, M., I. Baranowska-Bosiacka, I. Gutowska, M. Tarnowski, K. Piotrowska, E. Metryka, K. Safranow, and Chlubek. 2018. Effect of acetylcholinesterase inhibitors donepezil and rivastigmine on the activity and expression of cyclooxygenases in a model of the inflammatory action of fluoride on macrophages obtained from THP-1 monocytes. Toxicology 9-20: 406–407. https://doi.org/10.1016/j.tox.2018.05.007.

    Article  CAS  Google Scholar 

  16. Henriques, M.G., P.M. Silva, M.A. Martins, C.A. Flores, F.Q. Cunha, J. Assreuy-Filho, and R.S. Cordeiro. 1987. Mouse paw edema. A new model for inflammation. Brazilian Journal of Medical and Biological Research 20: 243–249.

    CAS  PubMed  Google Scholar 

  17. Vinegar, R., J.F. Traux, and J.L. Selph. 1973. Some quantitative temporal characteristic of carrageenin-induced pleurisy in the rat. Proceedings of the Society for Experimental Biology and Medicine 143: 711–714. https://doi.org/10.3181/00379727-143-37397.

    Article  CAS  PubMed  Google Scholar 

  18. Faria, E.O., L. Kato, C.M.A. de Oliveira, B.G. Carvalho, C.C. Silva, L.S. Sales, I.T.A. Schuquel, E.P. Silveira-Lacerda, and P.G. Delprete. 2010. Quaternary β-carboline alkaloids from Psychotria prunifolia (Kunth) Steyerm. Phytochemistry Letters 3: 133–116. https://doi.org/10.1016/j.phytol.2010.02.008.

    Article  CAS  Google Scholar 

  19. Ito, S., E. Okuda-Ashitaka, and T. Minami. 2001. Central and peripheral roles of prostaglandins in pain their interactions with novel neuropeptides nociceptin and nocistatin. Neuroscience Research 41: 299–332. https://doi.org/10.1016/S0168-0102(01)00289-9.

    Article  CAS  PubMed  Google Scholar 

  20. Decosterd, I., and C.J. Woolf. 2000. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87: 149–158. https://doi.org/10.1016/S0304-3959(00)00276-1.

    Article  CAS  PubMed  Google Scholar 

  21. Ellman, G.L., K.D. Courtney, V. Anres, and R.M. Featherstone. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology 7: 88–95. https://doi.org/10.1016/0006-2952(61)90145-9.

    Article  CAS  PubMed  Google Scholar 

  22. Bradford, M.M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical 72: 248–254. https://doi.org/10.1016/0003-2697(76)90527-3.

    Article  CAS  Google Scholar 

  23. Thomsen, R., and M.K. Christensen. 2006. MolDock. A new technique for high-accuracy molecular docking. Journal of Medicinal Chemistry 49: 3315–3321. https://doi.org/10.1021/jm051197e.

    Article  CAS  PubMed  Google Scholar 

  24. OECD. Test No. 425: Acute oral toxicity: up-and-down procedure. Guidelines for the testing of chemicals. 2008. https://doi.org/10.1787/9789264071049-en.

  25. ANVISA. 2013 Guia para a condução de estudos não clínicos de toxicologia e segurança farmacológica necessários ao desenvolvimento de medicamentos. 2 ed: Gerência de Avaliação de Segurança e Eficácia – GESEF; Brasília, p. 1–48.

  26. Bernard, P., D.B. Kireev, J.R. Chrétien, P.L. Fortier, and L. Coppet. 1999. Automated docking of 82 N-benzylpiperidine derivatives to mouse acetylcholinesterase and comparative molecular field analysis with ‘natural’ alignment. Journal of Computer-Aided Molecular Design 13: 355–371. https://doi.org/10.1023/A:1008071118697.

    Article  CAS  PubMed  Google Scholar 

  27. Bourne, Y., Z. Radic, G. Sulzenbacher, E. Kim, P. Taylor, and P. Marchot. 2006. Substrate and product trafficking through the active center gorge of acetylcholinesterase analyzed by crystallography and equilibrium binding. The Journal of Biological Chemistry 281: 29256–29267. https://doi.org/10.1074/jbc.M603018200.

    Article  CAS  PubMed  Google Scholar 

  28. Faria, E.O. 2009. Estudo fitoquímico das folhas de Psychotria prunifolia (Kunth) Steyerm (Rubiaceae)”. M. Sc. Thesis – Universidade Federal de Goiás.

  29. Erdelmeier, C.A.J., A.D. Wright, J. Orjala, B. Baumgartner, T. Rali, and O. Sticher. 1991. New indole alkaloid glycosides from Nauclea orientalis. Planta Medica 57: 149–152. https://doi.org/10.1055/s-2006-960052.

    Article  CAS  PubMed  Google Scholar 

  30. Henriques, A.T., S.O. Lopes, J.T. Paranhos, T.S. Gregianini, A.G. Fett-Neto, J. Schripsema, and G.L. Von Poser. 2004. N, β-D-glucopyranosyl vincosamide, a light regulated índole alkaloid from the shoots of Psychotria leiocarpa. Phytochemistry 65: 449–454. https://doi.org/10.1016/j.phytochem.2003.10.027.

    Article  CAS  PubMed  Google Scholar 

  31. Farias, F.M., C.S. Passos, M.D. Arbo, J.A. Zuanazzi, V.M. Steffen, and A.T. Henriques. 2010. Monoamine levels in rat striatum after acute intraperitoneal injection of strictosidinic acid isolated from Psychotria myriantha Mull. Arg. (Rubiaceae). Phytomedicine 17: 289–291. https://doi.org/10.1016/j.phymed.2009.05.008.

    Article  CAS  PubMed  Google Scholar 

  32. Both, F.L., V.A. Kerber, A.T. Henriques, and E. Elisabetsky. 2002. Analgesic properties of umbellatine from Psychotria umbellate. Pharmaceutical Biology 40: 336–341. https://doi.org/10.1076/phbi.40.5.336.8453.

    Article  CAS  Google Scholar 

  33. Both, F.L., L. Meneghini, V.A. Kerber, A.T. Henriques, and E. Elisabetsky. 2005. Psychopharmacological profile of the alkaloid psychollatine as a 5HT2A/C serotonin modulator. Journal of Natural Products 68: 374–380. https://doi.org/10.1021/np049695y.

    Article  CAS  PubMed  Google Scholar 

  34. Both, F.L., L. Meneghini, V.A. Kerber, A.T. Henriques, and E. Elisabetsky. 2006. Role of glutamate and dopamine receptors in the psychopharmacological profile of the indole alkaloid psychollatine. Journal of Natural Products 69: 342–345. https://doi.org/10.1021/np050291v.

    Article  CAS  PubMed  Google Scholar 

  35. Farias, F.M., C.S. Passos, M.D. Arbo, D.M. Barros, C. Gottfried, V.M. Steffen, and A.T. Henriques. 2012. Strictosidinic acid, isolated from Psychotria myriantha Mull. Arg. (Rubiaceae), decreases serotonin levels in rat hippocampus. Fitoterapia 86: 1138–1143. https://doi.org/10.1016/j.fitote.2012.04.013.

    Article  CAS  Google Scholar 

  36. Simões-Pires, C.A., F.M. Farias, A. Marston, E.F. Queiroz, C.G. Chaves, A.T. Henriques, and K. Hostettmann. 2006. Indole monoterpenes with antichemotactic activity from Psychotria myriantha: chemotaxonomic significance. Natural Products Communications 1: 1101–1106. https://archive-ouverte.unige.ch/unige:11846.

    Google Scholar 

  37. Calixto, N.O., M.S. Cordeiro, T.B.S. Giorno, G.G. Oliveira, N.P. Lopes, P.D. Fernandes, A.C. Pinto, and C.M. Rezende. 2017. Chemical constituents of Psychotria nemorosa Gardner and antinociceptive activity. Journal of the Brazilian Chemical Society 28: 707–723. https://doi.org/10.21577/0103-5053.20160219.

    Article  CAS  Google Scholar 

  38. Amador, T.A., L. Verotta, D.S. Nunes, and E. Elisabetsky. 2001. Involvement of NMDA receptors in the analgesic properties of psychotridine. Phytochemistry 8: 202–206. https://doi.org/10.1078/0944-7113-00025.

    Article  CAS  Google Scholar 

  39. Moura, L.T.S., Maruo, V.M. 2014. Aspectos farmacológicos e toxicológicos de Psychotria colorata - Revisão. Revista Científica Eletrônica de Medicina Veterinária 23: 1–16.

  40. Porto, D.D., A.T. Henriques, and A.G. Fett-Neto. 2009. Bioactive alkaloids from South American Psychotria and related species. The Open Bioactive Compounds 2: 29–36. https://doi.org/10.2174/1874847300902010029.

    Article  CAS  Google Scholar 

  41. Nantel, F., D. Denis, R. Gordon, A. Northey, M. Cirino, K.M. Metters, and C.C. Chan. 1999. Distribution and regulation of cyclooxygenase-2 in carrageenan induced inflammation. British Journal of Pharmacology 128: 853–859. https://doi.org/10.1038/sj.bjp.0702866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Seibert, K., Y. Zhang, K. Leahy, S. Hauser, J. Masferrer, W. Perkins, L. Lee, and P. Isakson. 1994. Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proceedings of the National Academy of Sciences of the United States of America 91: 12013–12017. https://doi.org/10.1073/pnas.91.25.12013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, D.Y., J.Q. Chen, J.Q. Ye, X.T. Zhai, J. Song, C.H. Jiang, J. Wang, H. Zhang, X.B. Jia, and F.X. Zhu. 2017. Anti-inflammatory effect of the six compounds isolated from Nauclea officinalis Pierrc ex Pitard, and molecular mechanism of strictosamide via suppressing the NF-κB and MAPK signaling pathway in LPS-induced RAW 264.7 macrophages. Journal of Ethnopharmacology 196: 66–74. https://doi.org/10.1016/j.jep.2016.12.007.

    Article  CAS  PubMed  Google Scholar 

  44. da Silva, É.R.S., G.R. Salmazzo, J. da Silva Arrigo, R.J. Oliveira, C.A.L. Kassuya, and C.A.L. Cardoso. 2016. Anti-inflammatory evaluation and toxicological analysis of Campomanesia xanthocarpa Berg. Inflammation 39: 1462–1468. https://doi.org/10.1007/s10753-016-0378-3.

    Article  CAS  PubMed  Google Scholar 

  45. Wang, H., M. Yu, M. Ochani, C.A. Amelia, M. Tanovic, S. Susarla, J.H. Li, H. Wang, H. Yang, L. Ulloa, Y. Al-Abed, C.J. Czura, and K.J. Tracey. 2003. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421: 384–388. https://doi.org/10.1038/nature01339.

    Article  CAS  PubMed  Google Scholar 

  46. Pick, M., C. Flores-Flores, D. Grisaru, S. Shochat, V. Deutsch, and H. Soreq. 2004. Blood-cell-specific acetylcholinesterase splice variations under changing stimuli. International Journal of Developmental Neuroscience 22: 523–531. https://doi.org/10.1016/j.ijdevneu.2004.07.016.

    Article  CAS  PubMed  Google Scholar 

  47. Enz, A., R. Amstutz, H. Boddeke, G. Gmelin, and J. Malanowski. 1993. Brain selective inhibition of acetylcholinesterase: a novel approach to therapy for Alzheimer’s disease. Progress in Brain Research 98: 431–445. https://doi.org/10.1016/S0079-6123(08)62429-2.

    Article  CAS  PubMed  Google Scholar 

  48. Passos, C.S., C.A. Simões-Pires, A. Nurisso, T.C. Soldi, L. Kato, C.M. de Oliveira, E.O. de Faria, L. Marcourt, C. Gottfried, P.A. Carrupt, and A.T. Henriques. 2013. Indole alkaloids of Psychotria as multifunctional cholinesterases and monoamine oxidases inhibitors. Phytochemistry 86: 8–20. https://doi.org/10.1016/j.phytochem.2012.11.015.

    Article  CAS  PubMed  Google Scholar 

  49. Peña-Bautista, C., M. Baquero, M. Vento, and C. Cháfer-Pericás. 2019. Free radicals in Alzheimer’s disease: lipid peroxidation biomarkers. Clinica Chimica Acta 491: 85–90. https://doi.org/10.1016/j.cca.2019.01.021.

    Article  CAS  Google Scholar 

  50. Wojtunik-Kulesza, K.A., A. Oniszczuk, T. Oniszczuk, and M. Waksmundzka-Hajnos. 2016. The influence of commom free radicals and antioxidants on development of Alzheimer’s disease. Biomedicine & Pharmacotherapy 78: 39–49. https://doi.org/10.1016/j.biopha.2015.12.024.

    Article  CAS  Google Scholar 

  51. Molina, R., A. González, M. Stelter, I. Pérez-Dorado, R. Kahn, M. Morales, M. Moscoso, S. Campuzano, N.E. Campillo, S. Mobashery, P. García, and J.A. Hermoso. 2009. Crystal structure of CbpF, a bifunctional choline-binding protein and autolysis regulator from Streptococcus pneumoniae. European Molecular Biology Organization 10: 246–251. https://doi.org/10.1038/embor.2009.57.

    Article  CAS  Google Scholar 

  52. Bagatin, M.C., A.A. Cândido, G.M.S. Pinheiro, N.F. Höehr, M. Machinski Jr., S.A.G. Mossini, E.A. Basso, and G.F. Gauze. 2013. Molecular modeling and anticholinesterasic activity of novel 2-arylaminocyclohexyl N,N-dimethylcarbamates. Journal of the Brazilian Chemical Society 24: 1798–1807. https://doi.org/10.5935/0103-5053.20130225.

    Article  CAS  Google Scholar 

  53. Bourne, Y., P. Taylor, P.E. Bougis, and P. Marchot. 1999. Crystal structure of mouse acetylcholinesterase. The Journal of Biological Chemistry 74: 2963–2970. https://doi.org/10.1074/jbc.274.5.2963.

    Article  Google Scholar 

  54. Guo, J., M.M. Hurley, J.B. Wright, and G.H. Lushington. 2004. A docking score function for estimating ligand-protein interactions: application to acetylcholinesterase inhibition. Journal of Medicinal Chemistry 47: 5492–5500. https://doi.org/10.1021/jm049695v.

    Article  CAS  PubMed  Google Scholar 

  55. Ordentlich, A., D. Barak, C. Kronman, Y. Flashner, M. Leitner, Y. Segall, N. Ariel, S. Cohen, B. Velan, and A. Shafferman. 1993. Dissection of the human acetylcholinesterase active center determinants of substrate specificity. Identification of residues constituting the anionic site, the hydrophobic site, and the acyl pocket. Journal of Medicinal Chemistry 268: 17083–17095.

    CAS  Google Scholar 

  56. Bartus, R.T., R.L.I. Dean, B. Beer, and A.S. Lippa. 1982. The cholinergic hypothesis of geriatric memory dysfunction. Science 217: 408–417. https://doi.org/10.1126/science.7046051.

    Article  CAS  PubMed  Google Scholar 

  57. Coyle, J.T., D.L. Price, and M.R. DeLong. 1983. Alzheimer’s disease: a disorder of cortical cholinergic neurons. Science 219: 1184–1190. https://doi.org/10.1126/science.6338589.

    Article  CAS  PubMed  Google Scholar 

  58. Battisti, V., M.R.C. Schetinger, L.D.K. Maders, K.F. Santos, M.D. Bagatini, M.C. Correa, R.M. Spanevello, M.C. Araújo, and V.M. Morsh. 2009. Changes in acetylcholinesterase (AchE) activity in lymphocytes and whole blood in acute lymphoblastic leukemia patients. Clinica Chimica Acta 402: 114–118. https://doi.org/10.1016/j.cca.2008.12.030.

    Article  CAS  Google Scholar 

  59. Schmatz, R., C.M. Mazzanti, R. Spanevello, N. Stefanello, J. Gutierres, M. Corrêa, M.M. da Rosa, M.A. Rubin, M.R.C. Schetinger, and V.M. Morsch. 2009. Resveratrol prevents memory deficits and the increase in acetylcholinesterase activity in streptozotocin-induced diabetic rats. European Journal of Pharmacology 610: 42–48. https://doi.org/10.1016/j.ejphar.2009.03.032.

    Article  CAS  PubMed  Google Scholar 

  60. Mazzanti, C.M., R. Spanevello, M. Ahmed, L.B. Pereira, J.F. Gonçalves, M. Corrêa, R. Schmatz, N. Stefanello, D.B.R. Leal, A. Mazzanti, A.T. Ramos, T.B. Martins, C.C. Danesi, D.L. Graça, V.M. Morsch, and M.R.C. Schetinger. 2009. Pre-treatment with ebselen and vitamin E modulate acetylcholinesterase activity: interaction with demyelinating agents. International Journal of Developmental Neuroscience 27: 73–80. https://doi.org/10.1016/j.ijdevneu.2008.09.005.

    Article  CAS  PubMed  Google Scholar 

  61. Kaizer, R.R., J.M. Gutierres, R. Schmatz, R.M. Spanevello, V.M. Morsch, M.R.C. Schetinger, and J.B.T. Rocha. 2010. In vitro and in vivo interactions of aluminum on NTPDase and AChE activities in lymphocytes of rats. Cellular Immunology 265: 133–138. https://doi.org/10.1016/j.cellimm.2010.08.001.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors are grateful to FUNDECT (Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul; 59/300.029/2015) and Capes (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; 2764/2011) for financial support and fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anelise Samara Nazari Formagio.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Ethical Approval

All experimental procedures were carried out in accordance with the U.S. National Institutes of Health and were approved by the Animal Ethics Committee from UFGD (Nbr. 14/2015).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Formagio, A.S.N., Volobuff, C.R.F., Kassuya, C.A.L. et al. Psychotria leiocarpa Extract and Vincosamide Reduce Chemically-Induced Inflammation in Mice and Inhibit the Acetylcholinesterase Activity. Inflammation 42, 1561–1574 (2019). https://doi.org/10.1007/s10753-019-01018-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-019-01018-w

KEY WORDS

Navigation