Skip to main content
Log in

Remote Detection of Concealed Radioactive Materials by Using Focused Powerful Terahertz Radiation

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

This review paper summarizes the results of studies of a novel concept of the remote detection of concealed radioactive materials by using focused high-power terahertz (THz) radiation. The concept is based on the known fact that the ambient electron density in air is low (one to three free electrons per cubic centimeter). These electrons can serve as seed electrons from which an avalanche breakdown in strong electromagnetic fields starts. When a powerful THz radiation is focused in a small spot, the breakdown-prone volume can be much smaller than a cubic centimeter. So, the probability of having some free electrons in this volume and, hence, the probability of breakdown are low in the absence of additional sources of air ionization. However, in the vicinity of radioactive materials (10–20 m), the electron density can be higher, and, hence, there are always some seed free electrons from which the avalanche ionization will start. Thus, the breakdown rate in this case can be close to 100 %. Realization of this concept requires studies of various physical and technical issues. First, it is necessary to develop a high-power source of (sub-) THz radiation whose power, frequency, and pulse duration are sufficient for realizing this goal. Second, it is necessary to analyze numerous issues important for realizing this concept. Among these issues are (a) enhancement of the ionization level of air molecules in the presence of hidden radioactive materials, (b) estimating the minimum detectable mass of radioactive material, (c) formation of breakdown-prone volumes in focused THz wave beams, and (d) effect of atmospheric conditions on the propagation and focusing of THz wave beams and on the optimal location of the breakdown-prone volume between a container with hidden radioactive material and a THz antenna. The results of these studies are described below.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D. Slaughter, M. Accatino, A. Bernstein et al., “Detection of special nuclear materials in cargo containers using neutron interrogation”, LLNL, (August 2003), UCRL-ID-155315.

  2. H. Rosoff and D. von Winterfeldt, Risk Analysis, vol. 27, No.3, 533–546 (2007).

  3. J. Medalia, “Detection of Nuclear Weapons and Materials: Science, Technologies, Observations”, (June 4, 2010), Congressional Research Service 7–5700, www.crs.gov, R40154.

  4. N. Gopalsami, H. T. Chien, A. Heifetz, E. R. Koehl, and A. C. Raptis, Rev. Scientific Instrum., 80, 084702 (2009).

    Article  Google Scholar 

  5. P. Sprangle, B. Hafizi, H. Milchberg, G. Nusinovich, and A. Zigler, Phys. Plasmas, 21, 013103 (2014).

    Article  Google Scholar 

  6. V. L. Granatstein and G. S. Nusinovich, J. Appl. Phys., 108, 063304 (2010).

    Article  Google Scholar 

  7. J. Krile and A. A. Neuber, Appl. Phys. Lett., 98, 211502 (2011).

    Article  Google Scholar 

  8. A. V. Gurevich, N. D. Borisov, and G. M. Milikh, “Artificially Ionized Regions in the Atmosphere”, (Gordon and Breach, Reading, England, 1997).

    Google Scholar 

  9. G. S. Nusinovich, G. M. Milikh, and B. Levush, J. Appl. Phys., 80, No. 7, 4189–4195 (1996).

    Article  Google Scholar 

  10. A. D. MacDonald, Microwave Breakdown in Gases (Wiley, New York, 1966).

    Google Scholar 

  11. A. Cook, M. Shapiro, and R. Temkin, Appl. Phys. Lett., 97, 011504 (2010).

    Article  Google Scholar 

  12. G. S. Nusinovich, R. Pu, T. M. Antonsen, Jr., O. V. Sinitsyn, J. Rodgers, A. Mohamed, J. Silverman, M. Al-Sheikhly, Y. S. Dimant, G. M. Milikh, M. Yu. Glyavin, A. G. Luchinin, E. A. Kopelovich, and V. L. Granatstein, J. Infrared Milli Terahz Waves, 32, No. 3, 380–402 (2011).

    Article  Google Scholar 

  13. V. A. Flyagin, A. G. Luchinin, and G. S. Nusinovich, Int. J. Infrared Millimeter Waves, 4, No. 4, 629–638 (1983).

  14. M. Yu. Glyavin, A. G. Luchinin, V. N. Manuilov, M. V. Morozkin, A. A. Bogdashov, I. G. Gachev, A. S. Sedov, R. Pu, G. S. Nusinovich, and V. L. Granatstein, Radiophysics and Quantum Electronics, 54, 600–608 (2012).

    Article  Google Scholar 

  15. A. G. Luchinin and G. S. Nusinovich, “Gyrotrons with pulsed magnetic fields”, In the book of collected papers “Gyrotrons”, IAP Acad. Sci., Gorky, USSR, pp. 55–72, 1989 (in Russian),.

  16. A. S. Kesar, J. Petillo, G. S. Nusinovich, W. B. Herrmannsfeldt, and V. L. Granatstein, IEEE Trans. Plasma Sci. 39, 3337–3344 (Dec. 2011)

  17. K. Sakamoto, Fusion Sci. Technol., 52, 145 (2007).

    Google Scholar 

  18. R. Pu, G. S. Nusinovich, O. V. Sinitsyn, and T. M. Antonsen, Jr., Phys. Plasmas, 18, 023107 (2011).

    Article  Google Scholar 

  19. M. Botton, T. M. Antonsen, Jr., B. Levush, K. T. Nguyen, and A. N. Vlasov, IEEE Trans. Plasma Sci., 26, 882–892 (1998).

    Article  Google Scholar 

  20. M. Yu. Glyavin, A. G. Luchinin, G. S. Nusinovich, J. Rodgers, D. G. Kashyn, C. A. Romero-Talamas, and R. Pu, Appl. Phys. Lett., 101, 153503 (2012).

    Article  Google Scholar 

  21. V. I. Belousov, M. M. Ofitserov, V. Yu. Plakhotnik, and Yu. V. Rodin, Instrum. Exp. Tech., 39, 402 (1996).

    Google Scholar 

  22. M. Yu. Glyavin, A. G. Luchinin, A. A. Bogdashov, V. N. Manuilov, M. V. Morozkin, Yu. Rodin, G. G. Denisov, D. Kashyn, J. Rodgers, C. A. Romero-Talamas, R. Pu, A. G. Shkvarunets, and G. S. Nusinovich, Radiophysics and Quantum Electronics, 56, 497–507 (2014).

    Article  Google Scholar 

  23. R. Pu, G. S. Nusinovich, O. V. Sinitsyn, and T. M. Antonsen, Jr., Physics of Plasmas, 17, 083105 (2010).

    Article  Google Scholar 

  24. S. N. Vlasov, L. I. Zagryadskaya, and M. I. Petelin, Radio Engineering and Electron Physics, 20, 14–17 (1975).

    Google Scholar 

  25. G. S. Nusinovich, P. Sprangle, C. A. Romero-Talamas, and V. L. Granatstein, J. Appl. Phys., 109, 083303 (2011).

    Article  Google Scholar 

  26. G. S. Nusinovich, P. Sprangle, V. E. Semenov, D. S. Dorozhkina, and M. Yu. Glyavin, J. Appl. Phys., 111, 124912 (2012).

    Article  Google Scholar 

  27. P. Felsensthal and J. M. Proud, Phys. Rev., 139, 1796 (1965).

    Article  Google Scholar 

  28. J. Foster, H. Krompholz, and A. Neuber, Physics of Plasmas, 18, 013502 (2011).

    Article  Google Scholar 

  29. D. Dorozhkina, V. Semenov, T. Olsson, D. Anderson, U. Jordan, J. Puech, L. Lapierre, and M. Lisak, Phys. Plasmas, 13, 013506 (2006).

    Article  Google Scholar 

  30. A. V. Gaponov-Grekhov, I. S. Dolina, B. E. Nemtsov, L. A. Ostrovsky, Soviet Physics, JETP, 75, 128 (1992).

    Google Scholar 

  31. G. S. Nusinovich, F. Qiao, D. G. Kashyn, R. Pu, and L. S. Dolin, J. Appl. Phys., 113, 233303 (2013).

    Article  Google Scholar 

  32. Y. S. Dimant, G. S. Nusinovich, P. Sprangle, J. Penano, C. A. Romero-Talamas, and V. L. Granatstein, J. Appl. Phys., 112, 083303 (2012).

    Article  Google Scholar 

  33. W. P. Jesse and J. Sadauskis, Phys. Rev., 97, 1668 (1955).

  34. G. F. Knoll, “Radiation Detection and Measurements”, 3rd ed. (John Wiley, New York, 2000).

    Google Scholar 

  35. G. S. Nusinovich, D. G. Kashyn, Y. Tatematsu, and T. Idehara, Physics of Plasmas, 21, 013108 (2014).

    Article  Google Scholar 

  36. D. E. Gray, ed., American Institute of Physics Handbook, 3rd ed. (McGraw-Hill Book Co., 1972), pp. 8–198.

  37. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation, (National Technical Information Office, U.S. Department of Commerce, Springfield, VA, 1971), pp. 218–258.

  38. R. L. Fante, Proc. IEEE, 63, 1669–1692 (1975); also R. L. Fante, Appl. Optics, 21, 9 (1982).

  39. Y. Hidaka, E. M. Choi, I. Mastovsky, M. A. Shapiro, J. R. Sirigiri, and R. J. Temkin, Phys. Rev. Lett., 100, 035003 (2008).

    Article  Google Scholar 

  40. Y. Hidaka, E. M. Choi, I. Mastovsky, M. A. Shapiro, J. R. Sirigiri, R. J. Temkin, G. F. Edmiston, A. A. Neuber, and Y. Oda, Phys. Plasmas, 16, 055702 (2009).

    Article  Google Scholar 

  41. A. M. Cook, J. S. Hummelt, M. A. Shapiro, and R. J. Temkin, Phys. Plasmas, 18, 100704 (2011).

    Article  Google Scholar 

  42. A. Cook, M. Shapiro, and R. Temkin, Appl. Phys. Lett., 97, 011504 (2010)

    Article  Google Scholar 

  43. S. K. Nam and J. P. Verboncoeur, Phys. Rev. Lett., 103, 055004 (2009).

    Article  Google Scholar 

  44. J.-P. Boeuf, B. Chaudhury, and G. Q. Zhu, Phys. Rev. Lett., 104, 015002 (2010).

    Article  Google Scholar 

  45. B. Chaudhurry and J.-P. Boeuf, IEEE Trans. Plasma Sci., 38 (9), 2281–2288 (2010).

    Article  Google Scholar 

  46. B. Chaudhurry, J.-P. Boeuf, G.-Q. Zhu, and O. Pascal, J. Appl. Phys., 110, 113306 (2011).

    Article  Google Scholar 

  47. V. E. Semenov, E. I. Rakova, V. P. Tarakanov, M. Yu. Glyavin, and G. S. Nusinovich, Phys. Plasmas, 22, 092308 (2015).

    Article  Google Scholar 

  48. V. L. Bratman, V. G. Zorin, Yu. K. Kalynov, V. A. Koldanov, A. G. Litvak, S. V. Razin, A. V. Sidorov, and V. A. Skalyga, Phys. Plasmas, 18, 083507 (2011).

    Article  Google Scholar 

  49. M. Yu Glyavin, S. V. Golubev, I. V. Izotov, A. G. Litvak, A. G. Luchinin, S. V. Razin, A. V. Sidorov, V. A. Skalyga, and A. V. Vodopyanov, Appl. Phys. Lett., 105, 174101 (2014).

    Article  Google Scholar 

  50. A. J. Peurrung, Nuclear Instrum. Methods in Phys. Research A 481, 731–738 (2002).

    Article  Google Scholar 

  51. M. N. Shneider and R. B. Miles, J. Appl. Phys., 98, 033301 (2005).

    Article  Google Scholar 

  52. J. D. Jackson, Classical Electrodynamics, John Wiley & sons, Inc., New York – London, (1962), Ch. 16.

Download references

Acknowledgments

The author would like to acknowledge the contributions made to results described in this review paper by his US and Russian colleagues, Drs. M. Yu. Glyavin, T. M. Antonsen, Jr., A. G. Luchinin, J. Rodgers, C. A. Romero-Talamas, A. G. Shkvarunets, R. Pu, V. L. Granatstein, L. S. Dolin, V. E. Semenov, Yu. S. Dimant, P. Sprangle, O. V. Sinitsyn, and D. G. Kashyn. This research program has been supported by the Office of Naval Research under Grant No. 000140911190. Results presented in the subsection 3.7 were obtained together with T. M. Antonsen, Jr. and R. Pu, but not published earlier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory S. Nusinovich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nusinovich, G.S. Remote Detection of Concealed Radioactive Materials by Using Focused Powerful Terahertz Radiation. J Infrared Milli Terahz Waves 37, 515–535 (2016). https://doi.org/10.1007/s10762-016-0243-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-016-0243-3

Keywords

Navigation