Skip to main content
Log in

Optimum Operating Conditions for Terahertz Scattering-Type Near-Field Microscopes

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).

    Article  Google Scholar 

  2. R. Jacob, S. Winnerl, M. Fehrenbacher, J. Bhattacharyya, H. Schneider, M. T. Wenzel, H.-G. von Ribbeck, L. M. Eng, P. Atkinson, O. G. Schmidt, and M Helm, “Intersublevel spectroscopy on single InAs-quantum dots by terahertz near-field microscopy,” Nano Lett. 12(8), 4336–4340 (2012).

    Article  Google Scholar 

  3. K. Moon, E. Jung, M. Lim, Y. Do, and H. Han, “Quantitative analysis and measurements of near-field interactions in terahertz microscopes,” Opt. Express 19(12), 11539–11544 (2011).

    Article  Google Scholar 

  4. K. Moon, E. Jung, M. Lim, Y. Do, and H. Han, “Terahertz near-field microscope: Analysis and measurements of scattering signals,” IEEE Trans. Terahertz Sci. Technol. 1(1), 164–168 (2011).

    Article  Google Scholar 

  5. K. Moon, Y. Do, M. Lim, G. Lee, H. Kang, K. Park, and H. Han, “Quantitative coherent scattering spectra in apertureless terahertz pulse near-field microscopes,” Appl. Phys. Lett. 101, 011109 (2012).

    Article  Google Scholar 

  6. K. Moon, H. Park, J. Kim, Y. Do, S. Lee, G. Lee, H. Kang, and H. Han, “Subsurface nanoimaging by broadband terahertz pulse near-field microscopy,” Nano Lett. 15(1), 549–552 (2015).

    Article  Google Scholar 

  7. H. Cory, A. C. Boccara, J. C. Rivoal, and A. Lahrech, “Electric field intensity variation in the vicinity of a perfectly conducting conical probe: application to near-field microscopy,” Microwave. Opt. Technol. Lett. 18(2), 120–124 (1998).

    Article  Google Scholar 

  8. O. J. F. Martin, and C. Girard, “Controlling and tuning strong optical field gradients at a local probe microscope tip apex,” Appl. Phys. Lett. 70(6), 705–707 (1997).

    Article  Google Scholar 

  9. M. M. Qazilbash, M. Brehm, B. G. Chae, P.-C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov,” Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).

    Article  Google Scholar 

  10. M. M. Qazilbash, M. Brehm, G. O. Andreev, A. Frenzel, P.-C. Ho, B. G. Chae, B. J. Kim, S. J. Yun, H. T. Kim, A. V. Balatsky, O. G. Shpyrko, M. B. Maple, F. Keilmann, and D. N. Basov, “Infrared spectroscopy and nano-imaging of the insulator-to-metal transition in vanadium dioxide,” Phys. Rev. B 79(7), 075107 (2009).

    Article  Google Scholar 

  11. T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photon. 7, 680–690 (2013).

    Article  Google Scholar 

  12. L. S. Bilbro, R. V. Aguilar, G. Logvenov, O. Pelleg, I. Božović, and N. P. Armitage, “Temporal correlations of superconductivity above the transition temperature in La2-xSrxCuO4 probed by terahertz spectroscopy,” Nat. Phys. 7, 298–302 (2011).

    Article  Google Scholar 

  13. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990).

    Article  Google Scholar 

  14. M. van Exter, and D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett. 56(17), 1694–1696 (1990).

    Article  Google Scholar 

  15. J. Shin, K. Moon, E. Lee, I. Lee, and K. Park, “Metal-VO2 hybrid grating structure for a terahertz active switchable linear polarizer,” Nanotechnology 26(31), 315203 (2015).

    Article  Google Scholar 

  16. J. D. Jackson, Classical Electrodynamics, 3rd edn. (John Wiley & Sons, Inc., Hoboken,1999), pp. 154–156.

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2009-0083512).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haewook Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, Y., Lee, S., Moon, K. et al. Optimum Operating Conditions for Terahertz Scattering-Type Near-Field Microscopes. J Infrared Milli Terahz Waves 37, 939–943 (2016). https://doi.org/10.1007/s10762-016-0284-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-016-0284-7

Keywords

Navigation