Skip to main content

Advertisement

Log in

Thermal Conductivity of Carbon Dioxide–Methane Mixtures at Temperatures Between 300 and 425 K and at Pressures up to 12 MPa

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The thermal conductivities of carbon dioxide and three mixtures of carbon dioxide and methane at six nominal temperatures between 300 and 425 K have been measured as a function of pressure up to 12 MPa. The measurements were made with a transient hot-wire apparatus. The relative uncertainty of the reported thermal conductivities at a 95% confidence level is estimated to be ±1.2%. Results of the low-density analysis of the obtained data were used to test expressions for predicting the thermal conductivity of nonpolar mixtures in a dilute-gas limit developed by Schreiber, Vesovic, and Wakeham. The scheme was found to underestimate the experimental thermal conductivity with deviations not exceeding 5%. The dependence of the thermal conductivity on density was used to test the predictive scheme for the thermal conductivity of gas mixtures under pressure suggested by Mason et al. and improved by Vesovic and Wakeham. Comparisons reveal a pronounced critical enhancement on isotherms at 300 and 325 K for mixtures with methane mole fractions of 0.25 and 0.50. For other states, comparisons of the experimental and predicted excess thermal conductivity contributions showed a smaller increase of the experimental data with deviations approaching 3% within the examined range of densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Schreiber V. Vesovic W.A. Wakeham (1997) Int. J. Thermophys. 18 925

    Google Scholar 

  2. M.J. Ross V. Vesovic W.A. Wakeham (1992) Physica A 183 519

    Google Scholar 

  3. E.A. Mason H.E. Khalifa J. Kestin R. DiPippo J.R. Dorfman (1978) Physica A 91 377

    Google Scholar 

  4. J. Kestin W.A. Wakeham (1980) Ber. Bunsenges Phys. Chem. 84 762

    Google Scholar 

  5. V. Vesovic W.A. Wakeham (1991) High Temp. High Press. 23 179

    Google Scholar 

  6. M.K. Tham K.E. Gubbins (1971) J. Chem. Phys. 55 268 Occurrence Handle10.1063/1.1675518

    Article  Google Scholar 

  7. J.O. Hirschfelder (1957) J. Chem. Phys. 26 282 Occurrence Handle10.1063/1.1743285

    Article  Google Scholar 

  8. J. Luettmer-Strathmann J.V. Sengers (1994) Int. J. Thermophys. 15 1421 Occurrence Handle10.1007/BF01458832

    Article  Google Scholar 

  9. J. Luettmer-Strathmann J.V. Sengers (1996) J. Chem. Phys. 104 3026 Occurrence Handle10.1063/1.471070

    Article  Google Scholar 

  10. J. Pátek J. Klomfar L. Čapla P. Buryan (2003) Int. J. Thermophys. 24 923 Occurrence Handle10.1023/A:1025024127880

    Article  Google Scholar 

  11. B.M. Rosenbaum G. Thodos (1969) J. Chem Phys. 51 1361 Occurrence Handle10.1063/1.1672182

    Article  Google Scholar 

  12. J. Kestin S.T. Ro Y. Nagasaka (1982) Ber. Bunsenges Phys. Chem. 86 945

    Google Scholar 

  13. J. Pátek J. Klomfar (2002) Fluid Phase Equilib. 198 147 Occurrence Handle10.1016/S0378-3812(01)00763-4

    Article  Google Scholar 

  14. R. Span W. Wagner (1996) J. Phys. Chem. Ref. Data 15 1509

    Google Scholar 

  15. Compressibility Factors of Natural Gas and Other Related Hydrocarbon Gases, A.G.A. Report No. 8, Second Ed (Arlington, Virginia, 1992).

  16. ISO 12 213, Natural Gas–Calculation of Compression Factor: Calculation using Molar–Composition Analysis. First Ed., (Geneva, 1997).

  17. M. Bureš R. Holub J. Leitner P. Vonka (1992) The Thermochemical Quantities of Organic Compounds Institute of Chemical Technology Editing Center Prague

    Google Scholar 

  18. Taylor B.N., Kyatt Ch.E. Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, NIST Tech. Note 1297 (1994).

  19. V. Vesovic W.A. Wakeham G.A. Olchowy J.V Sengers J.T.R Watson J. Millat (1990) J. Phys. Chem. Ref. Data 19 763

    Google Scholar 

  20. M.J. Assael J. Millat V. Vesovic W.A Wakeham (1990) J. Phys. Chem. Ref. Data 19 1137

    Google Scholar 

  21. V. Vesovic (2000) High Temp. High Press. 32 163

    Google Scholar 

  22. V. Vesovic (2001) Int. J. Thermophys. 22 801 Occurrence Handle10.1023/A:1010727016194

    Article  Google Scholar 

  23. D.G. Friend J.F. Ely H. Ingham (1989) J. Phys Chem. Ref. Data 18 583

    Google Scholar 

  24. G.C. Maitland E.B. Smith M. Rigby W.A Wakeham (1981) Intermolecular Forces Claredon Press Oxford

    Google Scholar 

  25. J. Millat M. Mustafa M. Ross W.A. Wakeham M. Zalaf (1987) Physica A 145 461

    Google Scholar 

  26. A.I. Johns S. Rashid J.T.R Watson A.A Clifford (1986) J. Chem. Soc. Faraday Trans. 1 82 2235 Occurrence Handle10.1039/f19868202235

    Article  Google Scholar 

  27. A. Scott A.I. Johns J.T.R Watson A.A Clifford (1983) J. Chem. Soc. Faraday Trans. 1 79 733 Occurrence Handle10.1039/f19837900733

    Article  Google Scholar 

  28. A.A. Clifford J. Kestin W.A. Wakeham (1979) Physica A 97 287

    Google Scholar 

  29. J.M. Lenoir E.W. Comings (1951) Chem. Eng Prog. 47 223

    Google Scholar 

  30. H.L. Johnston E.R. Grilly (1946) J. Chem Phys. 14 233 Occurrence Handle10.1063/1.1724125

    Article  Google Scholar 

  31. B.G. Dikins (1934) Proc. Roy. Soc. Lond. A 143 517

    Google Scholar 

  32. J. Kestin Y. Nagasaka W.A. Wakeham (1982) Ber. Bunsenges. Phys. Chem. 86 632

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Pátek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pátek, J., Klomfar, J., Čapla, L. et al. Thermal Conductivity of Carbon Dioxide–Methane Mixtures at Temperatures Between 300 and 425 K and at Pressures up to 12 MPa. Int J Thermophys 26, 577–592 (2005). https://doi.org/10.1007/s10765-005-5566-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-005-5566-6

Keywords

Navigation