Skip to main content
Log in

Application of the Multi-Current Transient Hot-Wire Technique for Absolute Measurements of the Thermal Conductivity of Glycols

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Experimental measurements of the thermal conductivity of mono-, di-, tri-, and tetra-ethylene glycol are presented. The experiments were carried out at atmospheric pressure and at temperatures ranging from 25 to 65°C. The multi-current transient hot-wire technique has been used with a platinum wire of 25 μm diameter; the electrical current varied from 25 to 75 mA. For all studied glycols, it was found that the thermal conductivity increases with temperature and decreases with the glycol molar mass. The random uncertainty of the reported experimental thermal conductivity data is less than 0.9%. The estimated systematic errors affecting the obtained data are at most 2%. The values obtained in this study were compared with previously published results for the four glycols, finding deviations of the order of 2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Nagasaka A. Nagashima (1981) Rev. Sci. Instrum. 52 229 Occurrence Handle10.1063/1.1136577

    Article  Google Scholar 

  2. C.A. Nietode Castro S.F. Li A. Nagashima R.D. Trengove W.A. Wakeham (1986) J. Phys. Chem. Ref. Data 15 1073

    Google Scholar 

  3. M.J. Assael E. Charitidou C.A. Nietode Castro W.A. Wakeham (1987) Int. J. Thermophys. 8 663 Occurrence Handle10.1007/BF00500786

    Article  Google Scholar 

  4. M.L.V. Ramires C.A. Nietode Castro R.A. Perkins Y. Nagasaka A. Nagashima M.J. Assael W.A. Wakeham (2000) J. Phys. Chem. Ref. Data 29 133 Occurrence Handle10.1063/1.556057

    Article  Google Scholar 

  5. V. Giaretto M.F. Torchio (2004) Int. J. Modern Phys. B 18 1489 Occurrence Handle10.1142/S0217979204024768

    Article  Google Scholar 

  6. H. Watanabe H Kato (2004) J. Chem. Eng. Data 49 809 Occurrence Handle10.1021/je034162x

    Article  Google Scholar 

  7. J. Kestin W.A. Wakeham (1978) Physica 92A 102

    Google Scholar 

  8. C.A. Nieto Castro Particlede R.A. Perkins H.M. Roder (1991) Int. J. Thermophys. 12 985 Occurrence Handle10.1007/BF00503514

    Article  Google Scholar 

  9. M.J. Assael E. Charitidou S. Avgoustiniatos W.A. Wakeham (1989) Int. J. Thermophys. 10 1127 Occurrence Handle10.1007/BF00500567

    Article  Google Scholar 

  10. Y.S. Touloukian P.E. Liley S.C. Saxena (1970) “Thermal Conductivity. Non-metallic Liquids and Gases,” in Thermophysical Properties of Matter , Vol. 3 Plenum New York

    Google Scholar 

  11. R. DiGuilio A.S. Teja (1984) J. Chem. Eng. Data 35 117 Occurrence Handle10.1021/je00060a005

    Article  Google Scholar 

  12. D. Bohne S. Fischer E. Obermeier (1984) ArticleTitleBer-Bunsenges Phys. Chem. 88 739

    Google Scholar 

  13. E. Obermeier S. Fischer D. Bohne (1985) ArticleTitleBer-Bunsenges Phys. Chem. 89 805

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Khayet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khayet, M., Zárate, J.M.O.d. Application of the Multi-Current Transient Hot-Wire Technique for Absolute Measurements of the Thermal Conductivity of Glycols. Int J Thermophys 26, 637–646 (2005). https://doi.org/10.1007/s10765-005-5568-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-005-5568-4

Keywords

Navigation