Skip to main content

Advertisement

Log in

High-Pressure Viscosity Measurements for the Ethanol + Toluene Binary System

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The viscosity of the ethanol + toluene binary system has been measured with a falling-body viscometer for seven compositions as well as for the pure ethanol in the temperature range from 293.15 to 353.15 K and up to 100 MPa with an experimental uncertainty of 2%. At 0.1 MPa the viscosity has been measured with a classical capillary viscometer (Ubbelohde) with an uncertainty of 1%. A total of 209 experimental measurements have been obtained for this binary system, which reveals a non-monotonic behavior of the viscosity as a function of the composition, with a minimum. The viscosity behavior of this binary system is interpreted as the result of changes in the free volume, and the breaking or weakening of hydrogen bonds. The excess activation energy for viscous flow of the mixtures is negative with a maximum absolute value of 335 J · mol−1, indicating that this binary system is a very weakly interacting system showing a negative deviation from ideality. The viscosity of this binary system is represented by the Grunberg–Nissan and the Katti–Chaudhri mixing laws with an overall uncertainty of 12% and 8%, respectively. The viscosity of methanol (23 point) has also been measured in order to verify the calibration of the falling-body viscometer within the considered T, P range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. French P. Malone (2005) Fluid Phase Equilib. 228–229 27 Occurrence Handle10.1016/j.fluid.2004.09.012

    Article  Google Scholar 

  2. L. H. Jones R. M. Badger (1951) J. Am. Chem. Soc. 73 3132 Occurrence Handle10.1021/ja01151a039

    Article  Google Scholar 

  3. M. Tamres (1952) J. Am. Chem. Soc. 74 3375 Occurrence Handle10.1021/ja01133a047

    Article  Google Scholar 

  4. Y. Ioki H. Kawana K. Nishimoto (1978) Bull. Chem. Soc. Jpn. 51 963

    Google Scholar 

  5. R. L. Brinkley R. B. Gupta (2001) AIChE J. 47 948 Occurrence Handle10.1002/aic.690470417

    Article  Google Scholar 

  6. D. Papaioannou C. Panayiotou (1994) J. Chem. Eng. Data 39 463 Occurrence Handle10.1021/je00015a013

    Article  Google Scholar 

  7. U. Sulzner G. Luft (1998) Int. J. Thermophys. 19 43 Occurrence Handle10.1023/A:1021494917841

    Article  Google Scholar 

  8. C. K. Zéberg-Mikkelsen L. Lugo J. Fernández (2005) Fluid Phase Equilib. 235 139 Occurrence Handle10.1016/j.fluid.2005.05.023

    Article  Google Scholar 

  9. L. Grunberg A. H. Nissan (1949) Nature 164 799 Occurrence Handle15395375

    PubMed  Google Scholar 

  10. P. K. Katti M. M. Chaudhri (1964) J. Chem. Eng. Data 9 442 Occurrence Handle10.1021/je60022a047

    Article  Google Scholar 

  11. P. Daugé A. Baylaucq L. Marlin C. Boned (2001) J. Chem. Eng. Data 46 823 Occurrence Handle10.1021/je000371v

    Article  Google Scholar 

  12. A. S. Pensado M. J. P. Comuñas L. Lugo J. Fernández (2005) J. Chem. Eng. Data 50 849 Occurrence Handle10.1021/je049662k

    Article  Google Scholar 

  13. M. C. S. Chen J. A. Lescarboura G. W. Swift (1968) AIChE J. 14 123 Occurrence Handle10.1002/aic.690140122

    Article  Google Scholar 

  14. Y. L. Sen E. Kiran (1990) J. Supercrit Fluids. 3 91 Occurrence Handle10.1016/0896-8446(90)90013-C

    Article  Google Scholar 

  15. E. Kiran Y. L. Sen (1992) Int. J. Thermophys. 13 411 Occurrence Handle10.1007/BF00503880

    Article  Google Scholar 

  16. M. J. Assael H. M. T. Avelino N. K. Dalaouti J. M. N. A. Fareleira K. R. Harris (2001) Int. J. Thermophys. 22 789 Occurrence Handle10.1023/A:1010774932124

    Article  Google Scholar 

  17. M. L. Huber A. Laesecke H. W. Xiang (2004) Fluid Phase Equilib. 224 263 Occurrence Handle10.1016/j.fluid.2004.07.012

    Article  Google Scholar 

  18. I. Cibulka L. Hnědkovský (1996) J. Chem. Eng. Data 41 657 Occurrence Handle10.1021/je960058m

    Article  Google Scholar 

  19. A. Et-Tahir C. Boned B. Lagourette P. Xans (1995) Int. J. Thermophys. 16 1309 Occurrence Handle10.1007/BF02083543

    Article  Google Scholar 

  20. H. W. Xiang, M. L. Huber, and A. Laesecke, submitted to J. Phys. Chem. Ref. Data.

  21. J. C. Landwehr S. Yerazunis H. H. Steinhauser (1958) Ind. Eng. Chem. Chem. Eng. Data Ser. 3 231

    Google Scholar 

  22. W. Weber (1975) Rheol. Acta 14 1012 Occurrence Handle10.1007/BF01516304

    Article  Google Scholar 

  23. Y. Tanaka T. Yamamoto Y. Satomi H. Kubota T. Makita (1977) Rev. Phys. Chem. Jpn. 47 12

    Google Scholar 

  24. Y. Tanaka Y. Matsuda H. Fujiwara H. Kubota T. Makita (1987) Int. J. Thermophys. 8 147 Occurrence Handle10.1007/BF00515199

    Article  Google Scholar 

  25. M. J. Assael S. K. Polimatidou (1994) Int. J. Thermophys. 15 95 Occurrence Handle10.1007/BF01439248

    Article  Google Scholar 

  26. P. S. Nikam B. S. Jagdale A. B. Sawant M. Hasan (2000) J. Chem. Eng. Data 45 559 Occurrence Handle10.1021/je990317i

    Article  Google Scholar 

  27. J. Zhang H. Liu (1991) J. Chem. Ind. Eng. China 3 269

    Google Scholar 

  28. X. Canet P. Daugé A. Baylaucq C. Boned C. K. Zéberg-Mikkelsen S. E. Quiñones-Cisneros E. H. Stenby (2001) Int. J. Thermophys. 22 1669 Occurrence Handle10.1023/A:1013182715406

    Article  Google Scholar 

  29. C. K. Zéberg-Mikkelsen X. Canet A. Baylaucq S. E. Quiñones-Cisneros C. Boned E. H. Stenby (2001) Int. J. Thermophys. 22 1691 Occurrence Handle10.1023/A:1013134832244

    Article  Google Scholar 

  30. S. Glasstone K. J. Laidler H. Eyring (1941) The Theory of Rate Processes, the Kinetics of Chemical Reactions, Viscosity, Diffusion, and Electrochemical Phenomena McGraw-Hill New York

    Google Scholar 

  31. R. Zwanzig (1965) Ann. Rev. Phys. Chem. 16 67 Occurrence Handle10.1146/annurev.pc.16.100165.000435

    Article  Google Scholar 

  32. E. L. Heric J. G. Brewer (1967) J. Chem. Eng. Data 22 574 Occurrence Handle10.1021/je60035a028

    Article  Google Scholar 

  33. I. L. Acevedo M. A. Postigo M. Katz (1990) Phys. Chem. Liq. 21 87

    Google Scholar 

  34. R. Bravo M. Pintos A. Amigo (1991) Phys. Chem. Liq. 22 245

    Google Scholar 

  35. P. Cea C. Lafuente J. P. Morand F. M. Royo J. S. Urieta (1995) Phys. Chem. Liq. 29 69

    Google Scholar 

  36. C. K. Zéberg-Mikkelsen M. Barrouhou A. Baylaucq C. Boned (2002) High Temp. High Press. 34 591 Occurrence Handle10.1068/htjr060

    Article  Google Scholar 

  37. M. Moha-Ouchane C. Boned A. Allal M. Benseddik (1998) Int. J. Thermophys. 19 161 Occurrence Handle10.1023/A:1021455203728

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Boned.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zéberg-Mikkelsen, C.K., Baylaucq, A., Watson, G. et al. High-Pressure Viscosity Measurements for the Ethanol + Toluene Binary System. Int J Thermophys 26, 1289–1302 (2005). https://doi.org/10.1007/s10765-005-8089-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-005-8089-2

Keywords

Navigation