Skip to main content
Log in

Thermodynamic Properties of Methanol in the Critical and Supercritical Regions

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The isochoric heat capacity of pure methanol in the temperature range from 482 to 533 K, at near-critical densities between 274.87 and 331.59 kg· m−3, has been measured by using a high-temperature and high-pressure nearly constant volume adiabatic calorimeter. The measurements were performed in the single- and two-phase regions including along the coexistence curve. Uncertainties of the isochoric heat capacity measurements are estimated to be within 2%. The single- and two-phase isochoric heat capacities, temperatures, and densities at saturation were extracted from experimental data for each measured isochore. The critical temperature (T c = 512.78±0.02K) and the critical density (ρc = 277.49±2 kg · m−3) for pure methanol were derived from the isochoric heat-capacity measurements by using the well-established method of quasi-static thermograms. The results of the C V VT measurements together with recent new experimental PVT data for pure methanol were used to develop a thermodynamically self-consistent Helmholtz free-energy parametric crossover model, CREOS97-04. The accuracy of the crossover model was confirmed by a comprehensive comparison with available experimental data for pure methanol and values calculated with various multiparameter equations of state and correlations. In the critical and supercritical regions at 0.98TcT ≤ 1.5Tc and in the density range 0.35ρc ≤ ρ leq 1.65 ρc, CREOS97-04 represents all available experimental thermodynamic data for pure methanol to within their experimental uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.K. Yerlett C.J. Wormald (1986) J. Chem. Thermodyn. 18 719 Occurrence Handle10.1016/0021-9614(86)90105-9

    Article  Google Scholar 

  2. G.C. Straty A.M.F Palavra T.J. Bruno (1986) Int. J. Thermophys. 7 1077 Occurrence Handle10.1007/BF00502379

    Article  Google Scholar 

  3. R. Ta’ani, Thesis, Dr. Ing. Thesis (Karlsruhe, 1976).

  4. Abdulagatov I.M., Dvorynchikov V.I., Aliev M.M., and Kamalov A.N., in Steam, Water, and Hydrothermal Systems, Proc. of the 13th Int. Conf. on the Props. of Water and Steam (NRC Research Press., Ottawa, 2000), p. 157.

  5. Polikhronidi N.G., Abdulagatov I.M., Magee J.W., Stepanov G.V., Batyrova R.G., to be submitted to Int. J. Thermophys.

  6. T.J. Bruno G.C. Straty (1986) J. Res. Natl. Bur. Stand. 91 135

    Google Scholar 

  7. Bazaev A.R., Abdulagatov I.M., Magee J.W., and Bazaev E.A., to be submitted to Int J. Thermophys.

  8. R. Nakayama K. Shinoda (1971) J. Chem. Thermodyn. 3 401

    Google Scholar 

  9. V.P. Belousov M.Y. Panov (1983) Thermodynamics of the Nonelectrolyte Aqueous Solutions Chemistry Leningrad

    Google Scholar 

  10. S.Y. Noskov M.G. Kiselev A.M. Kolker (1999) Russ. J. Structural Chem. 40 304

    Google Scholar 

  11. S.S.T Ting S.J. Macnaughton D.L. Tomasko N.R. Foster (1993) Ind. Eng. Chem. Res. 32 1471 Occurrence Handle10.1021/ie00019a022

    Article  Google Scholar 

  12. G.S. Gurdial S.J. Macnaughton D.L. Tomasko N.R. Foster (1993) Ind. Eng. Chem Res. 32 1488 Occurrence Handle10.1021/ie00019a024

    Article  Google Scholar 

  13. J.M. Dobbs J.M. Wong R.J. Lahiere K.P. Johnston (1987) Ind. Eng. Chem. Res. 26 56 Occurrence Handle10.1021/ie00061a011

    Article  Google Scholar 

  14. M.P. Ekart K.L. Bennett S.M. Ekart G.S. Gurdial C.L. Liotta C.A. Eckert (1993) AIChE J. 39 235 Occurrence Handle10.1002/aic.690390206

    Article  Google Scholar 

  15. K.M. Dooley Kao C.-P. R.P. Gambrell F.C. Knopf (1987) Ind. Eng. Chem. Res 26 2058 Occurrence Handle10.1021/ie00070a021

    Article  Google Scholar 

  16. J.M. Dobbs K.P. Johnston (1987) Ind. Eng. Chem. Res. 26 1476 Occurrence Handle10.1021/ie00067a035

    Article  Google Scholar 

  17. J.M. Dobbs J.M. Wong K.P. Johnston (1986) J. Chem. Eng. Data 31 303 Occurrence Handle10.1021/je00045a014

    Article  Google Scholar 

  18. W.J. Schmitt R.C. Reid (1986) Fluid Phase Equilib. 32 77 Occurrence Handle10.1016/0378-3812(86)87007-8

    Article  Google Scholar 

  19. T. Vlachou I. Prinos J. Vera C.G. Panayiotou (2002) Ind. Eng. Chem. Res. 41 1057 Occurrence Handle10.1021/ie0103660

    Article  Google Scholar 

  20. I.G. Economou M.D. Donohue (1991) AIChE J. 37 1875 Occurrence Handle10.1002/aic.690371212

    Article  Google Scholar 

  21. W.G. Chapman K.E. Gubbins G. Jackson M. Radosz (1990) Ind. Eng. Chem. Res 29 1709 Occurrence Handle10.1021/ie00104a021

    Article  Google Scholar 

  22. K.M. Reuck Particlede R.J.B. Craven (1993) International Thermodynamic Tables of the Fluid State - 12: Methanol Blackwell Scientific Publications London

    Google Scholar 

  23. R.D. Goodwin (1987) J. Phys. Chem. Ref. Data 16 799

    Google Scholar 

  24. A. Polt B. Platzer G. Maurer (1992) Chem. Tech. (Leipzig) 44 216

    Google Scholar 

  25. J.R.S. Machado W.B. Streett (1983) J. Chem. Eng. Data 28 218 Occurrence Handle10.1021/je00032a029

    Article  Google Scholar 

  26. H.E. Dillon S.G. Penoncello (2004) Int. J. Thermophys. 25 321 Occurrence Handle10.1023/B:IJOT.0000028470.49774.14

    Article  Google Scholar 

  27. Kozlov A.D., Methanol: Equations for Calculation of Thermophysical Properties (Russian Research Center for Standartization, Information and Certification of Materials, Technical Report, Moscow, 2002).

  28. P.T. Eubank (1970) Chem. Eng. Symp. Ser. 66 16

    Google Scholar 

  29. M.M. Aliev J.W. Magee I.M. Abdulagatov (2003) Int. J. Thermophys. 24 1527 Occurrence Handle10.1023/B:IJOT.0000004092.61076.56

    Article  Google Scholar 

  30. V.N. Zubarev P.G. Prusakov L.V. Sergeev (1973) Thermophysical Properties of Methyl Alcohol GSSSD Moscow

    Google Scholar 

  31. V.N. Zubarev A.V. Bagdonas (1967) Teploenergetika (Russ.) 4 79

    Google Scholar 

  32. R.S. Finkelstein L.I. Stiel (1970) Chem. Eng. Prog. Symp. Ser. 66 11

    Google Scholar 

  33. W. Ramsay S. Young (1887) Phil. Trans. R. Soc. London, Ser. A 178 313

    Google Scholar 

  34. D. Ambrose J. Walton (1989) Pure & Appl. Chem. 61 1396

    Google Scholar 

  35. W. Wagner (1973) Cryogenics 13 470 Occurrence Handle10.1016/0011-2275(73)90003-9

    Article  Google Scholar 

  36. Donham W.E. (1953). VLE Data for 1-Methanol, (Ph. D. Thesis Chemical Engineering Department, Ohio State University, 1953).

  37. A.L. Lydersen V. Tsochev (1990) Chem. Eng. Technol. 13 125 Occurrence Handle10.1002/ceat.270130117

    Article  Google Scholar 

  38. J.M. Skaates W.B. Kay (1964) Chem. Eng. Sci. 19 431 Occurrence Handle10.1016/0009-2509(64)85070-3

    Article  Google Scholar 

  39. T.W. Loos Particlede W. Poot J. Swaan Arons Particlede (1988) Fluid Phase Equilib. 42 209 Occurrence Handle10.1016/0378-3812(88)80060-8

    Article  Google Scholar 

  40. D. Ambrose C.H.S Sprake R. Townsend (1975) J. Chem. Thermodyn. 7 185 Occurrence Handle10.1016/0021-9614(75)90267-0

    Article  Google Scholar 

  41. W.B. Kay W.E. Donham (1955) Chem. Eng. Sci. 4 1 Occurrence Handle10.1016/0009-2509(55)85001-4

    Article  Google Scholar 

  42. Suleimanov Y.M., Ph. D. Thesis (Thermophysics Department, Power Eng. Research Inst., Baku, 1971).

  43. N.G. Polikhronidi R.G. Batyrova I.M. Abdulagatov J.W. Magee G.V. Stepanov (2004) J. Supercritical Fluids 33 209 Occurrence Handle10.1016/j.supflu.2004.08.009

    Article  Google Scholar 

  44. I. Cibulka (1993) Fluid Phase Equilib. 89 1 Occurrence Handle10.1016/0378-3812(93)85042-K

    Article  Google Scholar 

  45. Y.V. Efremov (1966) Russ. J. Phys. Chem. 40 667

    Google Scholar 

  46. H. Kitajima N. Kagawa H. Endo S. Tsuruno J.W. Magee (2003) J. Chem. Eng. Data 48 1583 Occurrence Handle10.1021/je034101z

    Article  Google Scholar 

  47. T. Kuroki N. Kagawa H. Endo S. Tsuruno J.W. Magee (2001) J. Chem. Eng. Data 46 1101 Occurrence Handle10.1021/je0002437

    Article  Google Scholar 

  48. S. Boyette C.M. Criss (1988) J. Chem. Eng. Data 33 426 Occurrence Handle10.1021/je00054a011

    Article  Google Scholar 

  49. M.M. Bashirov (2003) Isobaric Heat Capacity and Thermal Diffusivity of Alcohols and their Binary Mixtures ELM Baku

    Google Scholar 

  50. P.G. McCracken J.M. Smith (1956) AIChE J. 2 498 Occurrence Handle10.1002/aic.690020415

    Article  Google Scholar 

  51. A. Lydersen, Thesis (IUPAC Center, 1986).

  52. K.G. Akhmetzyanov (1949) Vestnik Moscovskogo Universiteta (Russ.) 6 93

    Google Scholar 

  53. K.G. Akhmetzyanov M.G. Shirkevich I.B. Rozhdestvenskii (1957) Primenenie Ul’traakust Issledovanii Veshestv (Russ.) MOPI Moscow

    Google Scholar 

  54. V.F. Nozdrev (1956) Acoustic J. (Russ.) 2 209

    Google Scholar 

  55. J.B. Hannay (1882) Proc. Roy. Soc. London 32 294

    Google Scholar 

  56. A. Nadejdine (1882) J. Russ. Phys. - Chem. Soc. 14 157

    Google Scholar 

  57. de Heen P. (1888). Recheches Touchant la Physique Comparee et la Theories des Liquides. Paris.

  58. G.C. Schmidt (1891) Z. Phys. Chem. 8 628

    Google Scholar 

  59. G.C. Schmidt (1891) Justus Liebigs Ann. Chem. 266 266

    Google Scholar 

  60. M. Centnerszwer (1904) Z. Phys. Chem. 49 199

    Google Scholar 

  61. L. Crismer (1904) Bull. Soc. Chim. Belg. 18 18

    Google Scholar 

  62. E. Salwedel (1930) Ann. Phys. (Leipzig) 5 853

    Google Scholar 

  63. A.Z. Golik S.D. Ravikovich A.V. Orishchenko (1955) Ukr. J. Chem. (Russ.) 21 167

    Google Scholar 

  64. R.F. Mocharnyuk (1960) Zh. Obshei Khimii (Russ.) 30 1098

    Google Scholar 

  65. W.B. Kay R. Khera (1975) Int. Data Ser., Selected Data Mixtures, Ser. A 62 1

    Google Scholar 

  66. A.Z. Francesconi H. Lentz E.U. Franck (1981) J. Phys. Chem. 85 3303 Occurrence Handle10.1021/j150622a019

    Article  Google Scholar 

  67. E. Hueltenschmidt W. Brunner G. Schlichthaerle (1987) J. Chem. Thermodyn. 19 273 Occurrence Handle10.1016/0021-9614(87)90135-2

    Article  Google Scholar 

  68. S. Young (1910) Sci. Proc. R. Dublin Soc 12 374

    Google Scholar 

  69. R. Fischer T. Reichel (1943) Mikrochem. Acta 31 102 Occurrence Handle10.1007/BF01412990

    Article  Google Scholar 

  70. I.R. Krichevskii N.E. Khazanova L.R. Lifshits (1957) Russ. J. Phys. Chem. 31 2711

    Google Scholar 

  71. W.L. Marshall E.V. Jones (1974) J. Inorg. Nucl. Chem. 36 2319 Occurrence Handle10.1016/0022-1902(74)80276-9

    Article  Google Scholar 

  72. N.G. Polikhronidi I.M. Abdulagatov R.G. Batyrova (2002) Fluid Phase Equilib. 201 269 Occurrence Handle10.1016/S0378-3812(02)00076-6

    Article  Google Scholar 

  73. D. Ambrose C.L. Young (1995) J. Chem. Eng. Data 40 345 Occurrence Handle10.1021/je00018a001

    Article  Google Scholar 

  74. L.C. Wilson W.V. Wilding H.L. Wilson G.M. Wilson (1995) J. Chem. Eng. Data 40 765 Occurrence Handle10.1021/je00020a008

    Article  Google Scholar 

  75. D.J. Rosental A.S. Teja (1989) AIChE J. 35 1829 Occurrence Handle10.1002/aic.690351109

    Article  Google Scholar 

  76. D.J. Rosental M.T. Gude A.S. Teja J. Mendez-Santiago (1997) Fluid Phase Equilib 135 89 Occurrence Handle10.1016/S0378-3812(97)00053-8

    Article  Google Scholar 

  77. E.D. Nikitin P.A. Pavlov A.P. Popov (1998) Fluid Phase Equilib. 149 223 Occurrence Handle10.1016/S0378-3812(98)00265-9

    Article  Google Scholar 

  78. D.M. Niederhausern ParticleVon G.M. Wilson N.F. Giles (2000) J. Chem. Eng. Data 45 157 Occurrence Handle10.1021/je990232h

    Article  Google Scholar 

  79. E.D. Nikitin P.A. Pavlov V.P. Skripov (1993) J. Chem. Thermodyn. 25 869 Occurrence Handle10.1006/jcht.1993.1084

    Article  Google Scholar 

  80. M. Gude A.S. Teja (1995) J. Chem. Eng. Data 40 1025 Occurrence Handle10.1021/je00021a001

    Article  Google Scholar 

  81. N.G. Polikhronidi R.G. Batyrova I.M. Abdulagatov (2000) Fluid Phase Equilib. 175 153 Occurrence Handle10.1016/S0378-3812(00)00457-X

    Article  Google Scholar 

  82. N.G. Polikhronidi I.M. Abdulagatov J.W. Magee G.V. Stepanov (2002) Int. J. Thermophys 23 745 Occurrence Handle10.1023/A:1015403104280

    Article  Google Scholar 

  83. I.K. Kamilov G.V. Stepanov I.M. Abdulagatov A.R. Rasulov E.I. Milikhina (2001) J. Chem. Eng. Data 46 1556 Occurrence Handle10.1021/je010136s

    Article  Google Scholar 

  84. I.M. Abdulagatov N.G. Polikhronidi R.G. Batyrova (1994) J. Chem. Thermodyn 26 1031 Occurrence Handle10.1006/jcht.1994.1121

    Article  Google Scholar 

  85. I.M. Abdulagatov N.G. Polikhronidi R.G. Batyrova (1994) Ber. Bunsenges. Phys Chem. 98 1068

    Google Scholar 

  86. N.G. Polikhronidi I.M. Abdulagatov J.W. Magee R.G. Batyrova (2001) J. Chem. Eng Data 46 1064 Occurrence Handle10.1021/je000269y

    Article  Google Scholar 

  87. N.G. Polikhronidi I.M. Abdulagatov J.W. Magee G.V. Stepanov (2001) Int. J. Thermophys 22 189 Occurrence Handle10.1023/A:1006767905322

    Article  Google Scholar 

  88. N.G. Polikhronidi R.G. Batyrova I.M. Abdulagatov (2000) Int. J. Thermophys. 21 1073 Occurrence Handle10.1023/A:1026493920313

    Article  Google Scholar 

  89. N.G. Polikhronidi I.M. Abdulagatov J.W. Magee G.V. Stepanov (2003) Int. J. Thermophys 24 405 Occurrence Handle10.1023/A:1022915804133

    Article  Google Scholar 

  90. W. Wagner A. Pruss (2002) J. Phys. Chem. Ref. Data 31 387 Occurrence Handle10.1063/1.1461829

    Article  Google Scholar 

  91. N.B. Vargaftik (1983) Handbook of Physical Properties of Liquids and Gases Hemisphere Publishing Co. Washington

    Google Scholar 

  92. L. Vlcek I. Nezbeda (2004) Mol. Phys. 102 771 Occurrence Handle10.1080/00268970410001705343

    Article  Google Scholar 

  93. A.K. Soper F. Bruni M.A. Ricci (1997) J. Chem. Phys. 106 247 Occurrence Handle10.1063/1.473030

    Article  Google Scholar 

  94. M.M. Hoffman M.S. Conradi (1997) J. Am. Chem. Soc. 119 3811 Occurrence Handle10.1021/ja964331g

    Article  Google Scholar 

  95. J.L. Fulton D.M. Pfund S.L. Wallen M. Newville E.A. Stern Y. Ma (1996) J. Chem Phys. 105 2161 Occurrence Handle10.1063/1.472089

    Article  Google Scholar 

  96. H.D. Eichholz S. Schulz M. Wolf (1981) Kalte und Klimatechnik 9 322

    Google Scholar 

  97. W.G. Chapman K.E. Gubbins G. Jackson M. Radosz (1989) Fluid Phase Equilib. 52 31 Occurrence Handle10.1016/0378-3812(89)80308-5

    Article  Google Scholar 

  98. H. Adidharma M. Radosz (1999) Fluid Phase Equilib. 161 1 Occurrence Handle10.1016/S0378-3812(99)00167-3

    Article  Google Scholar 

  99. M. Banaszak Y.C. Chiew M. Radosz (1993) Phys. Rev. E:Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 48 3760

    Google Scholar 

  100. M. A. Anisimov and Kiselev S.B., in Sov. Tech. Rev. B. Therm. Phys., Part 2, Vol. 3, A E. Scheindlin and Fortov V.E., eds. (Harwood Academic, New York, 1992), p. 1.

  101. J.V. Sengers J.M.H. Levelt Sengers (1986) Ann. Rev. Phys. Chem. 37 189 Occurrence Handle10.1146/annurev.pc.37.100186.001201

    Article  Google Scholar 

  102. M.A. Anisimov S.B. Kiselev J.V. Sengers S. Tang (1992) Physica A 188 487 Occurrence Handle10.1016/0378-4371(92)90329-O

    Article  Google Scholar 

  103. A.A. Povodyrev G.X. Jin S.B. Kiselev J.V. Sengers (1996) Int. J. Thermophys. 17 909 Occurrence Handle10.1007/BF01439196

    Article  Google Scholar 

  104. M.Y. Belyakov S.B. Kiselev J.C. Rainwater (1997) J. Chem. Phys. 107 3085 Occurrence Handle10.1063/1.474663

    Article  Google Scholar 

  105. K.S. Abdulkadirova A.K. Wyczalkovaka M.A. Anisimov J.V. Sengers (2002) J. Chem Phys. 116 4597 Occurrence Handle10.1063/1.1450125

    Article  Google Scholar 

  106. S.B. Kiselev J.F. Ely I.M. Abdulagatov M.L. Huber (2005) Ind. Eng. Chem. Res 44 6916 Occurrence Handle10.1021/ie050010e

    Article  Google Scholar 

  107. S.B. Kiselev J.F. Ely I.M. Abdulagatov J.W. Magee (2000) Int. J. Thermophys. 21 1373 Occurrence Handle10.1023/A:1006657410862

    Article  Google Scholar 

  108. S.B. Kiselev J.F. Ely (2004) Fluid Phase Equilib. 222 IssueID223 149 Occurrence Handle10.1016/j.fluid.2004.06.014

    Article  Google Scholar 

  109. L. Sun S.B. Kiselev J.F. Ely (2005) Fluid Phase Equilib. 233 270 Occurrence Handle10.1016/j.fluid.2005.04.019

    Article  Google Scholar 

  110. S.B. Kiselev (1997) Fluid Phase Equilib. 128 1 Occurrence Handle10.1016/S0378-3812(96)03173-1

    Article  Google Scholar 

  111. S.B. Kiselev J.C. Rainwater (1998) J. Chem. Phys. 109 643 Occurrence Handle10.1063/1.476603

    Article  Google Scholar 

  112. S.B. Kiselev J.C. Rainwater (1997) Fluid Phase Equilib. 141 129 Occurrence Handle10.1016/S0378-3812(97)00207-0

    Article  Google Scholar 

  113. S.B. Kiselev J.F. Ely I.M. Abdulagatov A.R. Bazaev J.W. Magee (2002) Ind. Eng Chem. Res. 41 1000 Occurrence Handle10.1021/ie010307m

    Article  Google Scholar 

  114. I.M. Abdulagatov A.R. Bazaev J.W. Magee S.B. Kiselev J.F. Ely (2005) Ind. Eng Chem. Res. 44 1967 Occurrence Handle10.1021/ie049339a

    Article  Google Scholar 

  115. L.D. Landau E.M. Lifshitz (1980) Statistical Physics, Part 1 Pergamon Press New York

    Google Scholar 

  116. A.Z. Patashinskii V.L. Pokrovskii (1979) Fluctuation Theory of Phase Transitions Pergamon Press New York, NY

    Google Scholar 

  117. S.B. Kiselev (1990) High. Temp. 28 47

    Google Scholar 

  118. M.Y. Belyakov S.B. Kiselev (1992) Physica A 190 75 Occurrence Handle10.1016/0378-4371(92)90078-5

    Article  Google Scholar 

  119. P.G. McCracken T.S. Storvick J.M. Smith (1960) J. Chem. Eng. Data 5 130 Occurrence Handle10.1021/je60006a002

    Article  Google Scholar 

  120. J.M. Costello S.T. Bowden (1958) Rec. Trav. Chim. Pays-Bas. 77 36

    Google Scholar 

  121. D. Ambrose, Correlation and Estimation of Vapour-Liquid Critical Properties I. Critical Temperatures of Organic Compounds, Report Chem 92, National Physical Laboratory Teddington, United Kingdom (1978).

  122. S.M. Loktev (1970) High Fat Alcohols Khimiya Moscow

    Google Scholar 

  123. R. H. Harrison and Gammon B.E., private communication to IUPAC Centre (1989); Table in K. M. de Reuck and Craven R.J.B, International Thermodynamic Tables of the Fluid State - 12: Methanol (Blackwell Scientific Publications, London, 1993), p. 83.

  124. J.M. Simonson D.J. Bradley R.H. Busey (1987) J. Chem. Thermodyn. 19 479 Occurrence Handle10.1016/0021-9614(87)90145-5

    Article  Google Scholar 

  125. K.A. Kobe R.E. Lynn SuffixJr. (1953) Chem. Rev. 52 117 Occurrence Handle10.1021/cr60161a003

    Article  Google Scholar 

  126. A.P. Kudchadker G.H. Alani B.J. Zwolinski (1968) Chem. Rev. 68 659 Occurrence Handle10.1021/cr60256a002

    Article  Google Scholar 

  127. R.C. Wilhoit B.J. Zwolinski (1973) J. Phys. Chem. Ref. Data (Suppl.) 2 423

    Google Scholar 

  128. J.M. Smith R. Srivastava (1986) Phys. Sciences Data Elsevier Amsterdam

    Google Scholar 

  129. R.J.B. Craven K.M. Reuck Particlede (1986) Int. J. Thermophys. 7 541 Occurrence Handle10.1007/BF00502388

    Article  Google Scholar 

  130. D. Ambrose C.H.S. Sprake (1970) J. Chem. Thermodyn. 2 631 Occurrence Handle10.1016/0021-9614(70)90038-8

    Article  Google Scholar 

  131. O. Osada M. Sato M. Uematsu (1999) J. Chem. Thermodyn. 31 451 Occurrence Handle10.1006/jcht.1998.0456

    Article  Google Scholar 

  132. V. Niesen A.M.F Palavra A.J. Kidney V.F. Yesavage (1986) Fluid Phase Equilib 31 283 Occurrence Handle10.1016/0378-3812(86)87013-3

    Article  Google Scholar 

  133. R.A. Wilsak S.W. Campell G. Thodos (1985) Fluid Phase Equilib. 28 13 Occurrence Handle10.1016/0378-3812(86)85066-X

    Article  Google Scholar 

  134. M. Hirata S. Suda (1967) Kagaku Kogaku 31 339

    Google Scholar 

  135. J.L. Hales J.H. Ellender (1976) J. Chem. Thermodyn. 8 1177

    Google Scholar 

  136. F. Vesely L. Svab R. Provaznik V. Svoboda (1988) J. Chem. Thermodyn. 20 981 Occurrence Handle10.1016/0021-9614(88)90227-3

    Article  Google Scholar 

  137. M. Radosz A. Lydersen (1980) Chem.-Ing.-Tech. 52 756 Occurrence Handle10.1002/cite.330520918

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Kiselev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdulagatov, I.M., Polikhronidi, N.G., Abdurashidova, A. et al. Thermodynamic Properties of Methanol in the Critical and Supercritical Regions. Int J Thermophys 26, 1327–1368 (2005). https://doi.org/10.1007/s10765-005-8091-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-005-8091-8

Keywords

Navigation