Skip to main content
Log in

Speeds of Sound and Isentropic Compressibilities in Binary Mixtures of 2-Propanol with Several 1-Alkanols at 298.15 K

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Speeds of sound and densities of 2-propanol +1-propanol, 2-propanol + 1-butanol, 2-propanol + 1-octanol, and 2-propanol + 1-hexanol have been measured over the entire composition range at 298.15 K. Speeds of sound of the binary mixtures have also been estimated from free length theory (FLT), collision factor theory (CFT), and Nomoto’s relation (NR) and have been compared with experimental speeds of sound. The isentropic compressibilities, molar isentropic compressibilities, excess molar isentropic compressibilities, and excess speeds of sound have been calculated from experimental densities and speeds of sound. Excess molar isentropic compressibilities and excess speeds of sound of the binary mixtures were fitted to the Redlich–Kister equation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Redlich A.T. Kister (1948) Ind. Eng. Chem 40 345 Occurrence Handle10.1021/ie50458a036

    Article  Google Scholar 

  2. B. Jacobson (1952) J. Chem. Phys 6 927 Occurrence Handle10.1063/1.1700615

    Article  Google Scholar 

  3. B. Jacobson (1952) Acta. Chem. Scand 6 1485

    Google Scholar 

  4. W. Schaafs (1963) Molekularakustik Springer-Verlag Berlin, Göttingen, Heidelberg, Germany

    Google Scholar 

  5. O. Nomoto (1958) J. Phys. Soc 13 1528 Occurrence Handle10.1143/JPSJ.13.1528

    Article  Google Scholar 

  6. G. Savaroglu E. Aral (2004) Fluid Phase Equilib. 215 253 Occurrence Handle10.1016/j.fluid.2003.09.001

    Article  Google Scholar 

  7. J.A. Riddich W.B. Bunger T.K. Sokano (1986) Organic Solvents Physical Properties and Methods of Purification (Techniques of Chemistry) Vol. 2 EditionNumber4 Wiley/Interscience New York

    Google Scholar 

  8. T.M. Letcher N. Deenadayalu (2000) J. Chem. Eng Data 45 730 Occurrence Handle10.1021/je000043v

    Article  Google Scholar 

  9. C.A. Cerdeirina C.A. Tovar J. Troncoso E. Carballo L. Romani (1999) Fluid Phase Equilib. 157 93 Occurrence Handle10.1016/S0378-3812(99)00018-7

    Article  Google Scholar 

  10. A. Valen M.C. Lopez J.S. Urieta F.M. Royo C. Lafuente (2002) J. Mol. Liquids 95 157 Occurrence Handle10.1016/S0167-7322(01)00279-3

    Article  Google Scholar 

  11. T.P. Iglesias J.L. Legido L. Romani M.I. Paz Andrade (1993) Phys. Chem. Liq 25 135

    Google Scholar 

  12. E. Mascato L. Mosteiro M.M. Pineiro J. Garcia T.P. Iglesias J.L. Legido (2001) J. Chem. Thermodyn 33 1081

    Google Scholar 

  13. A. Heintz B. Schmittecker D. Wagner R.N. Lichtenthaler (1986) J. Chem. Eng. Data 31 487 Occurrence Handle10.1021/je00046a030

    Article  Google Scholar 

  14. A. Arce A. Arce SuffixJr. J. Artinez-Ageitos E. Rodil O. Rodriguez (2000) Fluid Phase Equilib. 170 113 Occurrence Handle10.1016/S0378-3812(00)00328-9

    Article  Google Scholar 

  15. T.M. Aminabhavi M.I. Aralaguppi S.B. Harogoppad R.H. Balundgi (1993) J. Chem. Eng. Data 38 31 Occurrence Handle10.1021/je00009a008

    Article  Google Scholar 

  16. C. Gonzalez M. Iglesias J. Lanz G. Marino B. Orge J.M. Resa (2001) J Food Eng. 50 29 Occurrence Handle10.1016/S0260-8774(00)00192-8

    Article  Google Scholar 

  17. O. Kiyohara G.C. Benson (1981) J Solution Chem. 10 281 Occurrence Handle10.1007/BF00645017

    Article  Google Scholar 

  18. B.E. Cominges Particlede M.M. Pineiro T.P. Iglesias J.L. Legido M.I. Paz Andrade (1998) J. Chem Thermodyn. 30 1147 Occurrence Handle10.1006/jcht.1998.0382

    Article  Google Scholar 

  19. S.L. Oswal S.S.R. Putta (2001) Thermochim Acta 373 141 Occurrence Handle10.1016/S0040-6031(00)00778-4

    Article  Google Scholar 

  20. A. Pineiro A. Amigo R. Bravo P. Brocos (2000) Fluid Phase Equilib. 173 211 Occurrence Handle10.1016/S0378-3812(00)00431-3

    Article  Google Scholar 

  21. A. Pineiro P. Brocos A. Amigo M. Pintos (2002) J. Solution Chem 31 369 Occurrence Handle10.1023/A:1015807331250

    Article  Google Scholar 

  22. CDATA, Database of Thermodynamic and Transport Properties for Chemistry and Engineering, Version 1.020 (Department of Physical Chemistry, Institute of Chemical Technology, Prague, Czech Republic, 1999).

  23. E. Calvo P. Brocos A. Pineiro M. Pintos A. Amigo R. Bravo A.H. Roux-Desgranges (1999) J. Chem. Eng. Data 44 948 Occurrence Handle10.1021/je990078z

    Article  Google Scholar 

  24. G. Douheeret A. Pal M.I. Davis (1990) J Chem Thermodyn 22 99 Occurrence Handle10.1016/0021-9614(90)90036-P

    Article  Google Scholar 

  25. G. Douheeret A. Pal M.I. Davis J. Loya (1992) Thermochim. Acta 207 313 Occurrence Handle10.1016/0040-6031(92)80145-M

    Article  Google Scholar 

  26. G. Douheeret M.I. Davis J.C.R. Reis M.J. Blandamer (2001) Chem. Phys. Chem 2 148

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Savaroglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savaroglu, G., Aral, E. Speeds of Sound and Isentropic Compressibilities in Binary Mixtures of 2-Propanol with Several 1-Alkanols at 298.15 K. Int J Thermophys 26, 1525–1535 (2005). https://doi.org/10.1007/s10765-005-8101-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-005-8101-x

Keywords

Navigation