Skip to main content
Log in

Properties of Perfluorobenzene near the Critical Point

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

The density of vapor and liquid perfluorobenzene along the liquid–vapor coexistence curve has been studied by a gamma-ray attenuation technique over the temperature range from 299 to 517 K. According to measurements, the coordinates of the critical point are TC = 516.66 ± 0.05 K and ρ C = 550.5 ± 2 kg · m−3. The critical exponent β of the coexistence curve equals 0.343 ± 0.005, which agrees closely with the non-classical value. The results of our measurements were compared with data available in the literature. The height dependence of the density of a two-phase sample was investigated in relation to the temperature and time. These experiments made it possible to determine the isothermal compressibility of liquid and vapor phases near the critical point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stankus S.V., Khairulin R.A. (1992). High Temp. 30:487

    Google Scholar 

  2. Gruzdev V.A., Khairulin R.A., Komarov S.G., Stankus S.V. (2002). Int. J. Thermophys. 23:809

    Article  Google Scholar 

  3. Khairulin R.A., Stankus S.V. (1999). J. Phase Equilib. 20:148

    Article  Google Scholar 

  4. A. S. Basin, A. V. Baginsky, Ya. L. Kolotov, and S. V. Stankus, Gamma-Ray Attenuation Technique in Metallurgical Research (Inst. Thermophys., Sib. Branch, USSR Acad. Sci., Novosibirsk, 1981), pp. 11–22. [in Russian]

  5. Tables of Standard Reference Data, Molybdenum, Single-crystal Aluminium Oxide, Steel 12X18H10T. Temperature Coefficient of Thermal Expansion, GSSSD 59–83 (State Committee for Standards of USSR, Moscow, 1983). [in Russian]

  6. A. A. Aleksandrov and B. A. Grigor’ev, Tables of Thermophysical Properties of Water and Steam (Moscow Power Engineering Inst., Moscow, 1999). [in Russian]

  7. Douslin D.R., Osborn A. (1965). J. Sci. Instrum. 42:369

    Article  ADS  Google Scholar 

  8. Coplen T.B. (2001). Pure Appl. Chem. 73:667

    Article  ADS  Google Scholar 

  9. Mohr P.J., Taylor B.N. (2005). Rev. Mod. Phys. 77:1

    Article  ADS  Google Scholar 

  10. M. A. Anisimov, Critical Phenomena in Liquids and Liquid Crystals (Nauka, Moscow, 1987). [in Russian]

  11. Douslin D.R., Harrison R.A., Moore R.T. (1969). J. Chem. Thermodyn. 1:305

    Article  Google Scholar 

  12. Mousa A.H.N., Kay W.B., Kreglewski A. (1972). J. Chem. Thermodyn. 4:301

    Article  Google Scholar 

  13. Hales J.L., Townsend R. (1974). J. Chem. Thermodyn. 6:111

    Article  Google Scholar 

  14. Counsell J.F., Green J.H.S., Hales J.L., Martin G.F. (1965). Trans. Faraday Soc. 61:212

    Article  Google Scholar 

  15. Garland G.D. (1965). The Earth’s Shape and Gravity. Pergamon Press, Oxford

    Google Scholar 

  16. Stanley H.E. (1971). Introduction to Transitions and Critical Phenomena. Clarendon Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Stankus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stankus, S.V., Khairulin, R.A. Properties of Perfluorobenzene near the Critical Point. Int J Thermophys 27, 1110–1122 (2006). https://doi.org/10.1007/s10765-006-0092-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-006-0092-8

Keywords

Navigation