Skip to main content

Advertisement

Log in

A New Instrument for the Measurement of the Thermal Conductivity of Fluids

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

The transient hot-wire technique is at present the best technique for obtaining standard reference data for the thermal conductivity of fluids. It is an absolute technique, with a working equation and a complete set of corrections reflecting departures from the ideal model, where the principal variables are measured with a high degree of accuracy. It is possible to evaluate the uncertainty of the experimental thermal conductivity data obtained using the best metrological recommendations. The liquids proposed by IUPAC (toluene, benzene, and water) as primary standards were measured with this technique with an uncertainty of 1% or better (95% confidence level). Pure gases and gaseous mixtures were also extensively studied. It is the purpose of this paper to report on a new instrument, developed in Lisbon, for the measurement of the thermal conductivity of gases and liquids, covering temperature and pressure ranges that contain the near-critical region. The performance of the instrument for pressures up to 15 MPa was tested with gaseous argon, and measurements on dry air (Synthetic gas mixture, with molar composition certified by Linde AG, Wiesbaden, Germany, Ar – 0.00920; O2 – 0.20966; N2 – 0.78114), from room temperature to 473 K and pressures up to 10 MPa are also reported. The estimated uncertainty is 1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nieto de Castro C.A., Calado J.C.G, Wakeham W.A, Dix M., (1976). J. Phys. E, Sci. Instr. 9:1073

    Article  ADS  Google Scholar 

  2. C. A. Nieto de Castro, J. C. G. Calado, and W. A. Wakeham, Proc. 7th Symp. Therm. Prop., A. Cezairliyan, ed. (ASME, New York, 1977), pp. 247–253.

  3. C.A. Nieto de Castro, J.M.N.A. Fareleira, J.C.G. Calado, and W.A. Wakeham, Proc. 8th Symp. Prop.,J.V. Sengers, ed. (ASME, New York, 1982), pp. 730–738

  4. J.C.G. Calado, J.M.N.A. Fareleira, C. A. Nieto de Castro, and W.A. Wakeham, Int. J. Thermophys. 4:193 (1983).

    Article  Google Scholar 

  5. Calado J.C.G, Mardolcar U.V, Fareleira J.M.N.A, Nieto de Castro C.A., (1988). Int. J. Thermophys. 9:351

    Article  Google Scholar 

  6. Mardolcar U.V, Fareleira J.M.N.A, Nieto de Castro C.A., Wakeham W.A, (1985). High Temp. High Press. 17:469

    Google Scholar 

  7. Mardolcar U.V, Nieto de Castro C.A., Wakeham W.A, (1986). Int. J Thermophys. 7: 259

    Article  Google Scholar 

  8. Calado J.C.G, Mardolcar U.V, Nieto de Castro C.A., Roder H.M, Wakeham W.A, (1987). Physica 143A:314

    ADS  Google Scholar 

  9. Mardolcar U.V., Nieto de Castro C.A., (1987). Ber. Bunsenges. Phys. Chem. 91:152

    Google Scholar 

  10. Gurova N., Barão M.T., Mardolcar U.V, Nieto de Castro C.A., (1994). High Temp.-High Press. 26:25

    Google Scholar 

  11. Gurova A.N, C. A. Nieto de Castro, and Mardolcar U.V, Thermal Conductivity 22, Tong T.W, ed. (Technomic Pubs. Co., Lancaster, Pensylvania, 1994), pp. 189–199

  12. Gurova A.N, Nieto de Castro C.A., Mardolcar U.V, (1997). Int. J. Thermophys. 18:1077

    Article  Google Scholar 

  13. Gurova A.N, Mardolcar U.V, Nieto de Castro C.A., (1999). Int. J. Thermophys. 20:63

    Article  Google Scholar 

  14. Ramires M.L.V, Fareleira J.M.N.A, Nieto de Castro C.A., Dix M., Wakeham W.A, (1993). Int. J. Thermophys. 14:1119

    Google Scholar 

  15. Ramires M.L.V, Nieto de Castro C.A., Fareleira J.M.N.A, Wakeham W.A, (1994). J. Chem. Eng. Data 39:186

    Article  Google Scholar 

  16. Ramires M.L.V., Nieto de Castro C.A., (2000). Int. J. Thermophys.21:671

    Article  Google Scholar 

  17. Nieto de Castro C.A., Li S.F.Y, Nagashima A., Trengove R.D, Wakeham W.A, (1986). J. Phys. Chem. Ref. Data 15:1073

    ADS  Google Scholar 

  18. Ramires M.L.V, Nieto de Castro C.A., Perkins R.A, Nagasaka Y., Nagashima A., Assael M.J, Wakeham W.A, (2000). J. Phys. Chem. Ref. Data 29:133

    Article  ADS  Google Scholar 

  19. Assael M.J, Nieto de Castro C.A., Ramires M.L.V, Wakeham W.A, (1990). J. Phys. Chem. Ref. Data 19:113

    ADS  Google Scholar 

  20. Ramires M.L.V., Nieto de Castro C.A., Nagasaka Y., Nagashima A., Assael M.J, Wakeham W.A, (1995). J. Phys. Chem. Ref. Data 24:1377

    Article  ADS  Google Scholar 

  21. M.J. Assael, C.A. Nieto de Castro, H.M. Roder, W.A. Wakeham, Experimental Chemical Thermodynamics, Vol. 2, Measurement of the Transport Properties of Fluids, Chap. 7, Wakeham W.A, A. Nagashima, and Sengers J.V, eds. (Blackwells, Oxford, 1991).

  22. M. L. V. Ramires and C. A. Nieto de Castro, Proc. TEMPMEKO 2001, 8th Int. Symp. Temp. Therm.Measurements in Ind. and Sci., B. Fellmuth, J. Seidel, and G. Scholz, eds. (VDE VERLAG GmbH, Berlin, Germany, 2002), Vol. 2, p. 1181

  23. Nieto de Castro C.A., Taxis B., Roder H.M, Wakeham W.A, (1988). Int. J. Thermophys. 9:293

    Article  Google Scholar 

  24. Siegel R., Howell J.R, (1981). Thermal Radiation Heat Transfer”, 2nd Ed. Hemisphere, New York

    Google Scholar 

  25. Perkins R.A, Roder H.M, Nieto de Castro C.A., (1991). J. Res. Natl. Inst. Stand. Technol. 96:247

    Google Scholar 

  26. Touloukian Y.S., DeWitt D.P, (1970). Thermal Radiative Properties – Metallic Elements and Alloys. Plenum, New York

    Google Scholar 

  27. Menashe J., Wakeham W.A, (1982). Int. J. Heat Mass Transfer 25:461

    Article  Google Scholar 

  28. Nieto de Castro C.A., Li S.F.Y, Maitland G.C, Wakeham W.A, (1983). Int. J. Thermophys. 4:311

    Article  Google Scholar 

  29. Nieto de Castro C. A., Perkins R. A, Roder H. M, (1991). Int. J. Thermophys. 12:985

    Article  Google Scholar 

  30. M. L. V. Ramires, Medida Experimental de Condutibilidade Térmica de Líquidos Condutores pelo Método do Fio Aquecido em Regime Transiente, Ph.D. Thesis (University of Lisbon, 1992).

  31. Ramires M. L. V, Fareleira J. M. N. A, Nieto de Castro C. A., Dix M., Wakeham W. A, (1993). Int. J. Thermophys. 14:1119

    Google Scholar 

  32. Assael M. J, Dix M., Drummond I., Karagiannidis L., Lourenço M. J., Nieto de Castro C. A., Papadaki M., Ramires M. L, van den Berg H., Wakeham W. A, (1997). Int. J. Thermophys., 18:439

    Article  Google Scholar 

  33. S. G. S. Beirão, Condutibilidade Térmica de Fluidos em Gamas Alargadas de Temperatura e Pressão, Ph.D. Thesis (University of Lisbon, 2006)

  34. E.W. Lemmon, M.O. McLinden, M.L. Huber, REFPROP Version 7 (National Inst. Stand. Tech., Gaithersburg, Maryland, 2002).

  35. Stephan K., Laesecke A., (1985). J. Phys. Chem. Ref. Data 14:227

    ADS  Google Scholar 

  36. Nieto de Castro C. A., Friend D. G, Perkins R. A, Rainwater J. C, (1990). Chem. Phys. 145:19

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Nieto de Castro.

Additional information

M. L. V. Ramires: Deceased

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beirão, S.G.S., Ramires, M.L.V., Dix, M. et al. A New Instrument for the Measurement of the Thermal Conductivity of Fluids. Int J Thermophys 27, 1018–1041 (2006). https://doi.org/10.1007/s10765-006-0093-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-006-0093-7

Keywords

Navigation