Skip to main content

Advertisement

Log in

A Vibrating Plate Fabricated by the Methods of Microelectromechanical Systems (MEMS) for the Simultaneous Measurement of Density and Viscosity: Results for Argon at Temperatures Between 323 and 423K at Pressures up to 68 MPa

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

In the petroleum industry, measurements of the density and viscosity of petroleum reservoir fluids are required to determine the value of the produced fluid and the production strategy. Measurements of the density and viscosity of petroleum fluids require a transducer that can operate at reservoir conditions, and results with an uncertainty of about ±1% in density and ±10% in viscosity are needed to guide value and exploitation calculations with sufficient rigor. Necessarily, these specifications place robustness as a superior priority to accuracy for the design. A vibrating plate, with dimensions of the order of 1 mm and a mass of about 0.12 mg, clamped along one edge, has been fabricated, with the methods of Microelectromechanical (MEMS) technology, to provide measurements of both density and viscosity of fluids in which it is immersed. The resonance frequency (at pressure p =  0 is about 12 kHz) and quality factor (at p =  0 is about 2800) of the first order bending (flexural) mode of the plate are combined with semi-empirical working equations, coefficients obtained by calibration, and the mechanical properties of the plate to provide the density and viscosity of the fluid into which it is immersed. When the device was surrounded by argon at temperatures between 348 and 423 K and at pressures between 20 and 68 MPa, the density and viscosity were determined with an expanded (k =  2) uncertainty, including the calibration, of about ±0.35% and ±3%, respectively. These results, when compared with accepted correlations for argon reported in the literature, were found to lie within ±0.8% for density and less than ±5% for viscosity of literature values, which are within a reasonable multiple of the relative combined expanded (k =  2) uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Wagner, R. Kleinrahm, H. W. Lösch, J. T. R. Watson, V. Majer, A. A. H. Pádua, L. A. Woolf, J. C. Hoslte, A. M. de Figueiredo Palavara, K. Fujii, and J. W. Stansfeld, in Experimental Thermodynamics Vol. VI, Measurement of the Thermodynamic Properties of Single Phases, A. R. H. Goodwin, K. N. Marsh, and W. A. Wakeham, eds. (Elsevier for International Union of Pure and Applied Chemistry, Amsterdam, 2003), Chap. 5, pp. 127–235.

  2. Wagner W., Kleinrahm R. (2004). Metrologia. 41:S24

    Article  ADS  Google Scholar 

  3. Kuramoto N., Fujii K., Waseda A. (2004). Metrologia. 41:S84

    Article  ADS  Google Scholar 

  4. V. Majer and A. A. H. Pádua, in Experimental Thermodynamics Vol. VI, Measurement of the Thermodynamic Properties of Single Phases, A. R. H. Goodwin, K. N. Marsh, and W. A. Wakeham, eds. (Elsevier for International Union of Pure and Applied Chemistry, Amsterdam, 2003), Chap. 5, pp. 158–168.

  5. J. W. Stansfeld, in Experimental Thermodynamics Vol. VI, Measurement of the Thermodynamic Properties of Single Phases, A. R. H. Goodwin, K. N. Marsh, and W. A. Wakeham, eds. (Elsevier for International Union of Pure and Applied Chemistry, Amsterdam, 2003), Chap. 5, pp. 208–225.

  6. J. F. Johnson, J. R. Martin, and R. S. Porter, in Physical Methods of Chemistry, Pt. VI, A. L. Weissberger and B. W. Rossiter, eds. (Interscience, New York, 1977), p. 63.

  7. W. Künzel, H. F. van Wijk, and K. N. Marsh, in Recommended Reference Materials for the Realization of Physicochemical Properties, K. N. Marsh, ed. (Blackwell Scientific for International Union of Pure and Applied Chemistry, Oxford, United Kingdom, 1987), pp. 45–72.

  8. J. C. Nieuwoudt and I. R. Shankland, in Experimental Thermodynamics, Vol. III, Measurement of the Transport Properties of Fluids, W. A. Wakeham, A. Nagashima, and J. V. Sengers, eds. (Blackwell Scientific for International Union of Pure and Applied Chemistry, Oxford, United Kingdom, 1991), Chap. 2, pp. 9–48.

  9. M. Kawata, K. Kurase, A. Nagashima, and K. Yoshida, in Experimental Thermodynamics Vol. III, Measurement of the transport properties of fluids, W. A. Wakeham, A. Nagashima, and J. V. Sengers, eds. (Blackwell Scientific for International Union of Pure and Applied Chemistry, Oxford, United Kingdom, 1991) Chap. 3, pp. 51–75.

  10. M. Kawata, K. Kurase, A. Nagashima, K. Yoshida, and J. D. Isdale, in Experimental Thermodynamics Vol. III, Measurement of the transport properties of fluids, W. A. Wakeham, A. Nagashima, and J. V. Sengers, eds. (Blackwell Scientific for International Union of Pure and Applied Chemistry, Oxford, United Kingdom, 1991), Chap. 5, pp. 97–110.

  11. D. E. Diller and P. S. van der Gulik, in Experimental Thermodynamics Vol. III, Measurement of the transport properties of fluids, W. A. Wakeham, A. Nagashima, and J. V. Sengers, eds. (Blackwell Scientific for International Union of Pure and Applied Chemistry, Oxford, U.K., 1991), Chap. 4, pp. 79–94.

  12. Woodward J.G. (1953). J. Acoust. Soc. Am. 25:147

    Article  ADS  Google Scholar 

  13. Andrews M.K., Harris P.D. (1995). Sens Actuators A. 49:103

    Article  Google Scholar 

  14. Martin S.J., Butler M.A., Spates J.J., Mitchell M.A., Schubert W.K. (1998). J. Appl. Phys. 83:4589

    Article  ADS  Google Scholar 

  15. Enoksson P., Stemme G., Stemme E. (1995). Sens. Actuators A. 46–47:327

    Article  Google Scholar 

  16. Corman T., Enoksson P., Norén K., Stemme G. (2000). Meas. Sci. Technol. 11:205

    Article  ADS  Google Scholar 

  17. Y. Zhang, S. Tadigadapa, and N. Najafi, Transducers ’01 Eurosensors XV, Proc. 11th Int. Conf. on Solid-State Sensors and Actuators. (Munich, Germany, 2001).

  18. Binning G., Quate C.F., Gerber C. (1986). Phys. Rev. Lett. 56:930

    Article  ADS  Google Scholar 

  19. Weigert S., Dreier M., Hegner M. (1996). Appl. Phys. Lett. 69:2834

    Article  ADS  Google Scholar 

  20. Oden P. I., Chen G.Y., Steele R.A., Warmack R.J., Thundat T. (1996). Appl. Phys. Lett. 68:3814

    Article  ADS  Google Scholar 

  21. Kirstein S., Mertesdorf M., Schönhoff M. (1998). J. Appl. Phys. 84:1782

    Article  ADS  Google Scholar 

  22. Patois R., Vairac P., Cretin B. (1999). Appl. Phys. Lett. 75:295

    Article  ADS  Google Scholar 

  23. Bergaud C., Nicu L. (2000). Rev. Sci. Instrum. 71:2487

    Article  ADS  Google Scholar 

  24. Patois R., Vairac P., Cretin B. (2000). Rev Sci. Instrum. 71:3860

    Article  ADS  Google Scholar 

  25. Boskovic S., Chon J.W.M., Mulvaney P., Sader J.E. (2002). J. Rheol. 46:891

    Article  ADS  Google Scholar 

  26. Ahmed N., Nino D.F., Moy V.T. (2001). Rev Sci. Instrum. 72:2731

    Article  ADS  Google Scholar 

  27. Vidic A., Then D., Ziegler Ch. (2003). Ultramicroscopy. 97:407

    Article  Google Scholar 

  28. Maali A., Hurth C., Boisgard R., Jai C., Cohen-Bouhacina T., Aimé J.-P. (2005). J. Appl. Phys. 97:074907–1

    Article  ADS  Google Scholar 

  29. Walters D.A., Cleveland J.P., Thomson N.H., Hansma P.K., Wendman M.A., Gurley G., Elings V. (1996). Rev. Sci. Instrum. 67:3583

    Article  ADS  Google Scholar 

  30. Donzier E., Lefort O., Spirkovitch S., Baillieu F. (1991). Sens. Actuators A. 25–27:357

    Article  Google Scholar 

  31. Lundstrum R., Goodwin A.R.H., Hsu K., Frels M., Caudwell D., Trusler J. P.M., Marsh K.N. (2005). J. Chem. Eng. Data. 50:1377

    Article  Google Scholar 

  32. Sopkow T., Hsu K., Goodwin A.R.H. (2005). J. Chem. Eng. Data. 50:1732

    Article  Google Scholar 

  33. Jakeways C.V., Goodwin A.R.H. (2005). J. Chem. Thermodyn. 37:1093

    Article  Google Scholar 

  34. Goodwin A.R H., Donzier E.P., Vancauwenberghe O., Manrique de Lara M., Marty F., Mercier B., Fitt A.D., Ronaldson K.A., Wakeham W.A. (2006). J. Chem. Eng. Data. 51:190

    Article  Google Scholar 

  35. K. A. Ronaldson, A. D. Fitt, A. R. H. Goodwin, and W. A. Wakeham, to Int. J. Thermophys (accepted for publication).

  36. McSkimin H.J. (1953). J. Appl. Phys. 24:988

    Article  ADS  Google Scholar 

  37. Nikanorov S.P., Yu S.P., Burenkov A., Stepanov A.V. (1971). Sov. Phys. Solid State. 13:2516

    Google Scholar 

  38. Bettin H., Toth H. (2004). Metrologia. 41:S52

    Article  ADS  Google Scholar 

  39. K. Fujii, in Experimental Thermodynamics, Vol. VI, Measurement of the Thermodynamic Properties of Single Phases, A. R. H. Goodwin, K. N. Marsh, and W. A. Wakeham, eds. (Elsevier for International Union of Pure and Applied Chemistry, Amsterdam, 2003), Chap. 5, pp. 191–208.

  40. Waseda A., Fujii K. (2001). Meas. Sci. Technol. 12:2039

    Article  ADS  Google Scholar 

  41. Waseda A., Fujii K. (2004). Metrologia 41:S62

    Article  ADS  Google Scholar 

  42. Swenson C.A. (1983). J. Phys. Chem. Ref. Data. 12:179

    Article  ADS  Google Scholar 

  43. McSkimin H.J., Andreatch P. Jr. (1964). J. Appl. Phys. 35:2161

    Article  ADS  Google Scholar 

  44. McSkimin H.J., Andreatch P. Jr. (1964). J. Appl. Phys. 35:3312

    Article  ADS  Google Scholar 

  45. K. Ronaldson, Mathematical Modeling of MEMS Densimeters and Viscometers (Ph.D. Thesis, University of Southampton, United Kingdom, 2006).

  46. M. Manrique de Lara and C. Atkinson, Sensors 2004, Proc. IEEE, Vol. 2 (2004), pp. 828–831.

  47. M. Manrique de Lara, Development of an Integrated Model of Vibrating Element Fluid Property Sensor (Ph.D. Thesis, University of London, 2005).

  48. Bourouina T., Spirkovitch S., Marty F., Baillieu F., Donzier E. (1993). Appl. Surf. Sci. 65–66:536

    Article  Google Scholar 

  49. Kovacs G.T.A., Maluf N.L., Petersen K.E. (1998). Proc. IEEE. 86:1536

    Article  Google Scholar 

  50. Mehl J.B. (1978). J. Acoust. Soc. Am. 64:1523

    Article  ADS  Google Scholar 

  51. C. Harrison, E. Travernier, O. Vancauwenberghe, E. Donzier, K. Hsu, A. R. H. Goodwin, F. Marty, and B. Mercier, Sens. Act. A (in press).

  52. Tegeler Ch., Span R., Wagner W. (1999). J. Phys. Chem. Ref. Data. 28:779

    ADS  Google Scholar 

  53. Lemmon E.W., Jacobsen R.T (2004). Int. J. Thermophys. 25:21

    Article  Google Scholar 

  54. E. W. Lemmon, M. O. McLinden, and M. L. Huber, Reference Fluid Properties Program (REFPROP) 23, Version 7.1 (Physical and Chemical Properties Division National Institute of Standards and Technology, Boulder, Colorado, 2005).

  55. Assael M.J., Avelino H.M.T., Dalaouti N.K., Fareleira J.M.N.A., Harris K.R. (2001). Int. J. Thermophys. 22:789

    Article  Google Scholar 

  56. Blom F.R., Bouwstra S., Elwenspoek M., Fluitman J.H.J. (1992). J. Vac. Sci. Technol. B. 10:19

    Article  Google Scholar 

  57. Yasumura K.Y., Stowe T.D., Chow E.M., Pfafman T., Kenny T.W., Stipe B.C., Rugar D. (2000). J. Microelectromechanical Syst. 9:117

    Article  Google Scholar 

  58. Bruschi P., Nannini A., Pieri F. (2004). Sens. Actuators A. 114:21

    Article  Google Scholar 

  59. Maitland G.C., Rigby M., Smith E.B., Wakeham W.A. (1987). Intermolecular Forces: Their Origin and Determination. Oxford University Press, Oxford, p. 571.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. H. Goodwin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodwin, A.R.H., Fitt, A.D., Ronaldson, K.A. et al. A Vibrating Plate Fabricated by the Methods of Microelectromechanical Systems (MEMS) for the Simultaneous Measurement of Density and Viscosity: Results for Argon at Temperatures Between 323 and 423K at Pressures up to 68 MPa. Int J Thermophys 27, 1650–1676 (2006). https://doi.org/10.1007/s10765-006-0114-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-006-0114-6

Keywords

Navigation