Skip to main content

Advertisement

Log in

Thermal Conductivities of [bmim][PF6], [hmim][PF6], and [omim][PF6] from 294 to 335 K at Pressures up to 20 MPa

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Thermal conductivities are reported for a series of 1-alkyl-3-methylimidazolium hexafluorophosphates having butyl, hexyl, and octyl groups, which are expressed by [bmim][PF6], [hmim][PF6], and [omim][PF6], respectively. The experimental method used was a transient short-hot-wire method. Since only a small amount of sample liquid is required, this method was found to be effective for the thermal-conductivity measurements of ionic liquids (ILs). The experimental temperatures ranged from 294 to 335 K at pressures up to 20 MPa. The values of the thermal conductivities of ILs at normal pressure are similar to those of benzene. It was found that an effect of the length of the alkyl chain on the thermal conductivities in ILs is negligible. From the data for the thermal conductivity and viscosity at 293.15 K and 0.1 MPa of ILs and normal alkanes, a simple correlation was developed based on the Mohanty theory. From comparisons between the thermal conductivities of ILs and those of organic liquids (n-hexane, benzene, and methanol), the temperature and pressure dependences of the thermal conductivity of ILs are relatively weak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Welton T. (1999) . Chem. Rev. 99: 2071

    Article  Google Scholar 

  2. Wasserscheid P., Keim W. (2000) . Angew. Chem. Int. Ed. 39: 3772

    Article  Google Scholar 

  3. Dupont J., de Souza R.F., Suarez P.A.Z. (2002) . Chem. Rev. 102: 3667

    Article  Google Scholar 

  4. Zhang Z.C. (2006) . Adv. Catal. 49: 153

    Article  Google Scholar 

  5. J.D. Holbrey, R.D. Rogers, in Ionic Liquids, ed. by R.D. Rogers, K.R. Seddon, ACS Symp. Ser. 818, American Chemical Society, Washington D.C. (2002) p. 446

  6. Freemantle M. (2003) . Chem. Eng. News 81: 9

    Google Scholar 

  7. P. Wasserscheid, in Ionic Liquids in Synthesis, ed. by P. Wasserscheid, T. Welton (Wiley-VCH, Weinheim, Germany, 2003)

  8. Short P.L. (2006) . Chem. Eng. New. 84: 15

    Google Scholar 

  9. Seddon K.R., Stark A., Torres M.J. (2000) . Pure Appl. Chem. 72: 2275

    Article  Google Scholar 

  10. Gu Z.Y., Brennecke J.F. (2002) . J. Chem. Eng. Data 47: 339

    Article  Google Scholar 

  11. Seddon K.R., Stark A., Torres M.J. (2002) . ACS Symp. Ser. 819: 34

    Article  Google Scholar 

  12. Kabo G.J., Blokhin A.V., Paulechka Y.U., Kabo A.G., Shymanovich M.P., Magee J.W. (2004) . J. Chem. Eng. Data 49: 453

    Article  Google Scholar 

  13. Fredlake C.P., Crosthwaite J.M., Hert D.G., Aki S.N.V.K., Brennecke J.F. (2004) . J. Chem. Eng. Data 49: 954

    Article  Google Scholar 

  14. de Azevedo R.G., Esperanca J.M.S.S., Najdanovic-Visak V., Visak Z.P., Guedes H.J.R., da Ponte M.N., Rebelo L.P.N. (2005) . J. Chem. Eng. Data 50: 997

    Article  Google Scholar 

  15. Noda A., Hayamizu K., Watanabe M. (2001) . J. Phys. Chem. B 105: 4603

    Article  Google Scholar 

  16. Okoturo O.O., van der Noot T.J. (2004) . J. Electroanal. Chem. 568: 167

    Article  Google Scholar 

  17. Tomida D., Kumagai A., Qiao K., Yokoyama C. (2006) . Int. J. Thermophys. 27: 39

    Article  Google Scholar 

  18. Van Valkenburg M.E., Vaughn R.L., Williams M., Wilkes J.S. (2005) . Thermochim. Acta 425: 181

    Article  Google Scholar 

  19. Tomida D., Kenmochi S., Tsukada T., Yokoyama C. (2006) . Netsu Bussei 20: 173

    Article  Google Scholar 

  20. Fujii M., Zhang X., Imaishi N., Fujiwara S., Sakamoto T. (1997) . Int. J. Thermophys. 18: 327

    Article  Google Scholar 

  21. Zhang X., Hendro W., Fujii M., Tomimura T., Imaishi N. (2002) . Int. J. Thermophys. 23: 1077

    Article  Google Scholar 

  22. Zhang X., Fujii M. (2003) . Polym. Eng. Sci. 43: 1755

    Article  Google Scholar 

  23. Kumagai A., Tomida D., Yokoyama C. (2006) . Int. J. Thermophys. 27: 376

    Article  Google Scholar 

  24. Ramires M.L.V., Nieto de Castro C.A., Nagasaka Y., Nagashima A., Assael M.J., Wakeham W.A. (1995) . J. Phys. Chem. Ref. Data 24: 1377

    Article  ADS  Google Scholar 

  25. Watanabe H., Seong D.J. (2002) . Int. J. Thermophys. 23: 337

    Article  Google Scholar 

  26. J.G. Huddleston, H.D. Willauer, R.P. Swatloski, A.E. Visser, R.D. Rogers, Chem. Commun. 1765 (1998)

  27. Cull S.G., Holbrey J.D., Vargas-Mora V., Seddon K.R., Lye G.J. (2000) . Biotechnol. Bioeng. 69: 227

    Article  Google Scholar 

  28. Nagasaka Y., Nagashima A. (1981) . Ind. Eng. Chem. Fundam. 20: 216

    Article  Google Scholar 

  29. Kashiwagi H., Hashimoto T., Tanaka Y., Kubota H., Makita T. (1982) . Int. J. Thermophys. 3: 201

    Article  Google Scholar 

  30. Assael M.J., Karagiannidis E., Wakeham W.A. (1992) . Int. J. Thermophys. 13: 735

    Article  Google Scholar 

  31. Ogiwara H., Arai Y., Saito S. (1980) . Ind. Eng. Chem. Fundam. 19: 295

    Article  Google Scholar 

  32. Shulga V.M., Eldarov F.G., Atanov Yu.A., Kuyumchev A.A. (1986) . Int. J. Thermophys. 7: 1147

    Article  Google Scholar 

  33. Turnbull A.G. (1961) . Austr. J. Appl. Sci. 12: 30

    Google Scholar 

  34. Takeuchi M., Suzuki M., Nagata K. (1983) . Trans. JSME B49: 1468

    Google Scholar 

  35. Mohanty S.R. (1951) . Nature 168: 42

    Article  ADS  Google Scholar 

  36. P.E. Liley, T. Makita, Y. Tanaka, in CINDAS Data Series on Material Properties, vol V-1, ed. by C.Y. Ho (Hemisphere, New York, 1988)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Yokoyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomida, D., Kenmochi, S., Tsukada, T. et al. Thermal Conductivities of [bmim][PF6], [hmim][PF6], and [omim][PF6] from 294 to 335 K at Pressures up to 20 MPa. Int J Thermophys 28, 1147–1160 (2007). https://doi.org/10.1007/s10765-007-0241-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-007-0241-8

Keywords

Navigation