Skip to main content
Log in

Volumetric Properties of the Ionic Liquid, 1-Butyl-3-methylimidazolium Tetrafluoroborate, in Organic Solvents at T =  298.15K

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Apparent molar volumes, \(V_\phi\) , and compressibilities, \(\kappa _\phi\) , of 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]) have been determined from precise density and speed-of-sound measurements in organic solvents, methanol (MeOH), acetonitrile (MeCN), tetrahydrofuran (THF), N,N-dimethylacetamide (DMA), and dimethylsulfoxide (DMSO) in the dilute region of the ionic liquid. Corresponding values at infinite dilution are estimated by the Redlich–Mayer and Pitzer equations. The results have been interpreted by the interaction of the [BMIm][BF4] in the organic solvents. Results show that the structure and dielectric constant of the organic solvents play an important role for the ion–solvent interactions in these mixtures. It was found that the strength of interaction between [BMIm][BF4] with the studied organic solvents has the order DMSO > DMA > MeOH > MeCN > THF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Welton T. (1999). Chem. Rev. 99: 2071

    Article  Google Scholar 

  2. Earle M.J., Seddon K.R. (2000). Pure Appl. Chem. 72: 13910

    Article  Google Scholar 

  3. Dupont J., R.F. de Souza, P.Suarez A.Z. (2002). Chem. Rev. 102: 3667

    Article  Google Scholar 

  4. Rodgers R.D., Seddon K.R. (2003). Science 302: 792

    Article  Google Scholar 

  5. Zafarani-Moattar M.T., Shekaari H. (2005). J. Chem. Eng. Data 5: 1694

    Article  Google Scholar 

  6. Zafarani-Moattar M.T., Shekaari H. (2005). J. Chem. Thermodyn. 37: 1029

    Article  Google Scholar 

  7. Zafarani-Moattar M.T., Shekaari H. (2006). J. Chem. Thermodyn. 38: 624

    Article  Google Scholar 

  8. Zafarani-Moattar M.T., Shekaari H. (2006). J. Chem. Thermodyn. 38: 1377

    Article  Google Scholar 

  9. Shekaari H., Zafarani-Moattar M.T. (2007). Fluid Phase Equilib. 254: 198

    Article  Google Scholar 

  10. Malham I.B., Letellier P., Mayaffre A., Turmine M. (2007). J. Chem. Thermodyn. 39: 1132

    Article  Google Scholar 

  11. Zhou Q., Wang L.-S., Chen H.-P. (2006). J. Chem. Eng. Data 51: 905

    Article  Google Scholar 

  12. de Azevedo R.G., Esperança J.M.S.S., Najdanovic-Visak V., Visak Z.P., Guedes H.J.R., da Ponte M.N., Rebelo L.P.N. (2005). J. Chem. Eng. Data 50: 997

    Article  Google Scholar 

  13. Fredlake C.P., Crosthwaite J.M., Hert D.G., Aki S.N.V.K., Brennecke J.F. (2004). J. Chem. Eng. Data 49: 954

    Article  Google Scholar 

  14. Zhang L.-Z., Deng D.-S., Han J.-Z., Ji D.-X., Ji J.-B. (2007). J. Chem. Eng. Data 52, 199

    Article  Google Scholar 

  15. Lei Z., Arlt W., Wasserscheid P. (2006). Fluid Phase Equilib. 241, 290

    Article  Google Scholar 

  16. Trindade J.R., Visak Z.P., Blesic M., Marrucho I.M., Coutinho J.A.P., Lopes J.N.C., Rebelo L.P.N. (2007). J. Chem. Eng. Data 52, 80

    Article  Google Scholar 

  17. Makowska A., Siporska A., Szydłowski J. (2006). J. Phys. Chem. B 110: 17195

    Article  Google Scholar 

  18. Kim K.-S., Park S.-Y., Choi S., Lee H. (2004). J. Chem. Eng. Data 49: 1550

    Article  Google Scholar 

  19. Zhou Q., Wang L.-S. (2006). J. Chem. Eng. Data 51: 1698

    Article  Google Scholar 

  20. Zhou Q., Wang L.-S., Wu L.-S., Li M-Y (2007). J. Chem. Eng. Data 52, 131

    Article  Google Scholar 

  21. Shang H.-T., Wu J.-S., Zhou Q., Wang L-S. (2006). J. Chem. Eng. Data 51: 1286

    Article  Google Scholar 

  22. Yokozeki A., Shiflett M.B. (2007). Ind. Eng. Chem. Res. 46: 1605

    Article  Google Scholar 

  23. Wang J., Tian Y., Zhao Y., Zhuo K. (2003). Green Chem. 5: 618

    Article  Google Scholar 

  24. Katayanagi H., Nishikawa K., Shimozaki H., Miki K., Chiba N., Westh P., Koga Y. (2004). J. Phys. Chem. B 108: 19451

    Article  Google Scholar 

  25. Bowers J., Butts C.P., Martin P.J., Vergara-Gutierrez M.C., Heenan R.K. (2004). Langmuir 20: 2191

    Article  Google Scholar 

  26. Comminges C., Rarhdadi R., Laurent M., Troupel M. (2006). J. Chem. Eng. Data 51: 680

    Article  Google Scholar 

  27. Malham I.B., Letellier P., Turmine M. (2006). J. Phys. Chem. B 110: 14212

    Article  Google Scholar 

  28. Sarkar A., Pandey S. (2006). J. Chem. Eng. Data 51: 2051

    Article  Google Scholar 

  29. Marcus Y., Hefter G. (2004). Chem. Rev. 104: 3405

    Article  Google Scholar 

  30. Redlich O., Mayer D.M. (1964). Chem. Rev. 64, 221

    Article  Google Scholar 

  31. Rodgers P.S.Z., Pitzer K.S. (1982). J. Phys. Chem. Ref. Data 11, 15

    Article  ADS  Google Scholar 

  32. Roy M.N., Dey R., Jha A. (2001). J. Chem. Eng. Data 46: 1327

    Article  Google Scholar 

  33. Zhao Y., Wang J., Lu H., Lin R. (2004). J. Chem. Thermodyn. 36, 1

    Article  MATH  Google Scholar 

  34. Brocos P., Pineiro N., Bravo R., Amigo A., Roux A.H., Roux-Desgranges G. (2002). J. Chem. Eng. Data 47, 351

    Article  Google Scholar 

  35. Afanasyef V., Zyatkova L. (1996). J. Chem. Eng. Data 41: 1315

    Article  Google Scholar 

  36. Saha N., Das B., Hazra D. (1995). J. Chem. Eng. Data 40: 1264

    Article  Google Scholar 

  37. Prolongo M.G., Masegosa R.M., Fuentes I.H., Horta A. (1984). J. Phys. Chem. 88: 2163

    Article  Google Scholar 

  38. Krakowiak J., Bobicz D., Grzybkowski W. (2000). J. Mol. Liq. 88: 197

    Article  Google Scholar 

  39. Aminabhavi T.M., Bindu G. (1995). J. Chem. Eng. Data 40: 856

    Article  Google Scholar 

  40. Marcus Y., Hefter G. (1999). J. Solution Chem. 28: 575

    Article  Google Scholar 

  41. Lankford J.I., Holladay W.T., Criss C. (1984). J. Solution Chem. 13, 699

    Article  Google Scholar 

  42. Resa J.M., Gonzalez C., de Landaluce S.O., Lanz J. (2002). J. Chem. Thermodyn. 34: 1013

    Article  Google Scholar 

  43. Krakowiak J., Koziel H., Grzybkowski W. (2004). J. Mol. Liq. 112, 171

    Article  Google Scholar 

  44. Scharlin P., Steinby K. (2003). J. Chem. Thermodyn. 35, 279

    Article  Google Scholar 

  45. Sekhar G.C., Rao M.V.P., Prasad D.H.L., Kumar Y.V.L.R. (2003). Thermochim. Acta 402, 99

    Google Scholar 

  46. Syal V.K., Chauhan S., Gautam R. (1998). Ultrasonics 36, 619

    Article  Google Scholar 

  47. Lankford J.I., Criss C. (1987). J. Solution Chem. 16, 753

    Article  Google Scholar 

  48. Fredlake C.P., Crosthwaite J.M., Hert D.G., Aki S.N.V.K., Brennecke J.F. (2004). J. Chem. Eng. Data 49, 954

    Article  Google Scholar 

  49. Hanke C.G., Atamas N.A., Lyndeln-Bell R.M. (2002). Green Chem. 4, 107

    Article  Google Scholar 

  50. Dey N.C., Bhuyan J., Haque I. (2003). J. Solution Chem. 32, 547

    Article  Google Scholar 

  51. Ananthaswamyt J., Atkinson G. (1984). J. Chem. Eng. Data 29, 81

    Article  Google Scholar 

  52. Das D., Das B., Hazra D. (2004). J. Mol. Liq. 111, 15

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemayat Shekaari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shekaari, H., Zafarani-Moattar, M.T. Volumetric Properties of the Ionic Liquid, 1-Butyl-3-methylimidazolium Tetrafluoroborate, in Organic Solvents at T =  298.15K. Int J Thermophys 29, 534–545 (2008). https://doi.org/10.1007/s10765-008-0395-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-008-0395-z

Keywords

Navigation