Skip to main content

Advertisement

Log in

Experimental Study of the Critical Behavior of the Isochoric Heat Capacity of Aqueous Ammonia Mixture

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The isochoric heat capacity of a NH3 + H2O (0.2607 mole fraction of ammonia) mixture has been measured in the near- and supercritical regions. Measurements were made in the single- and two-phase regions including the coexistence curve using a high-temperature, high-pressure, nearly constant-volume adiabatic calorimeter. Measurements were made along 38 liquid and vapor isochores in the range from 120.03 kg · m−3 to 671.23 kg · m−3 and at temperatures from 478 K to 634 K and at pressures up to 28 MPa. Temperatures at the liquid–gas phase transition curve, T S(ρ), for each measured density (isochore) and the critical parameters (T C and ρ C) for the 0.2607 NH3 + 0.7393  H2O mixture were obtained using the quasi-static thermograms technique. The expanded uncertainty of the heat-capacity measurements at the 95 % confidence level with a coverage factor of k = 2 is estimated to be 2 % to 3 % in the near-critical and supercritical regions, 1.0 % to 1.5 % in the liquid phase, and 3 % to 4 % in the vapor phase. Uncertainties of the density, temperature, and concentration measurements are estimated to be 0.06 %, 15mK, and 5×10−5 mole fraction, respectively. An unusual behavior of the isochoric heat capacity of the mixture was found near the maxcondetherm point (in the retrograde region). The value of the Krichevskii parameter was calculated using the critical properties data for the mixture and vapor-pressure data for the pure solvent (H2O). The derived value of the Krichevskii parameter was used to analyze the critical behavior of the strong (C P , K T ) and weakly (C V ) singular properties in terms of the principle of isomorphism of critical phenomena in binary mixtures. The values of the characteristic parameters (K 1, K 2), temperatures (τ 1, τ 2), and the characteristic density differences (Δρ 1, Δρ 2) were calculated for the NH3 + H2O mixture by using the critical-curve data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Jonsson, Ph. D. Thesis (RIT, Stockholm, Sweden, 2003)

  2. Thorin E.: Ammonia–Water Mixtures as Working Fluid in Power Cycles. RIT, Stockholm (1998)

    Google Scholar 

  3. E. Thorin, Ph. D. Thesis (RIT, Stockholm, 2000)

  4. Thorin E., Dejfors C., Svedberg G.: Int. J. Thermophys. 19, 501 (1998)

    Article  Google Scholar 

  5. Park Y.M., Sonntag R.E.: Int. J. Energy Res. 14, 153 (1990)

    Article  Google Scholar 

  6. Kalina A.I., Leibowitz H.M.: Geothermal Resour. Council, Trans. 13, 605 (1989)

    Google Scholar 

  7. K. Gawlik, V. Hassani, Geothermal Resources Council, Annual Meeting (San Diego, CA, 20–23 September 1998)

  8. E.K. Olsson, E.B. Thorin, A.S. Dejfors, G. Svedberg, in Proceedings Florence World Energy Research Symposium (Florence, Italy, 6–8 July 1994), pp. 39–49

  9. V. Hassani, J. Dickens, Y. Parent, Ammonia/Water Condensation Test: Plate-Fin Heat Exchanger (Absorber/Cooler) (NREL, Golden, CO, September 2001)

  10. M. Jonsson, E. Thorin, G. Svedberg, in Proceedings Florence World Energy Research Symposium (Florence, Italy, 6–8 July 1994), pp. 1–11

  11. Y. Amano, T. Hashizume, Y. Tanzawa, T. Suzuki, M. Akiba, A. Usui, in Proceedings 2000 International Joint Power Generation Conference (Miami Beach, FL, 23–26 July 2000), pp. 1–6

  12. Y. Amono, in Proceedings 1999 International Joint Power Generation Conference—ICOPE ASME/JSME PWR, vol. 34 (1999), p. 67

  13. Dejfors A.S., Thorin E., Svedberg G.: Energy Convers. Mgmt. 39, 1675 (1998)

    Article  Google Scholar 

  14. G. Wall, Ch.-Ch. Chuang, M. Ishida, in Analysis and Design of Energy Systems: Analysis of Industrial Processes, ed. by R.A. Bajura, M.R. von Spakovsky, E.S. Geskin, vol. 10-3 (AES, ASME, 2000), pp. 73–77

  15. Tillner-Roth R., Friend D.G.: J. Phys. Chem. Ref. Data 27, 45 (1998)

    Article  ADS  Google Scholar 

  16. Polikhronidi N.G., Abdulagatov I.M., Magee J.W., Batyrova R.G.: J. Chem. Eng. Data 46, 1064 (2001)

    Article  Google Scholar 

  17. Polikhronidi N.G., Abdulagatov I.M., Magee J.W., Stepanov G.V.: Int. J. Thermophys. 22, 189 (2001)

    Article  Google Scholar 

  18. Polikhronidi N.G., Abdulagatov I.M., Magee J.W., Stepanov G.V.: Int. J. Thermophys. 23, 745 (2002)

    Article  Google Scholar 

  19. Polikhronidi N.G., Abdulagatov I.M., Magee J.W., Stepanov G.V.: Int. J. Thermophys. 24, 405 (2003)

    Article  Google Scholar 

  20. Polikhronidi N.G., Abdulagatov I.M., Batyrova R.G.: Fluid Phase Equilib. 201, 269 (2002)

    Article  Google Scholar 

  21. Polikhronidi N.G., Abdulagatov I.M., Stepanov G.V., Batyrova R.G.: Fluid Phase Equilib. 252, 33 (2007)

    Article  Google Scholar 

  22. Polikhronidi N.G., Batyrova R.G., Abdulagatov I.M., Magee J.W., Stepanov G.V.: J. Supercrit. Fluids 33, 209 (2004)

    Article  Google Scholar 

  23. Polikhronidi N.G., Batyrova R.G., Abdulagatov I.M.: Fluid Phase Equilib. 175, 153 (2000)

    Article  Google Scholar 

  24. Polikhronidi N.G., Batyrova R.G., Abdulagatov I.M.: Int. J. Thermophys. 21, 1073 (2000)

    Article  Google Scholar 

  25. Polikhronidi N.G., Abdulagatov I.M., Magee J.W., Stepanov G.V.: Int. J. Thermophys. 27, 729 (2006)

    Article  Google Scholar 

  26. Polikhronidi N.G., Stepanov G.V., Abdulagatov I.M., Batyrova R.G.: Thermochim. Acta 454, 99 (2007)

    Article  Google Scholar 

  27. Magee J.W., Kagawa N.: J. Chem. Eng. Data 43, 1082 (1998)

    Article  Google Scholar 

  28. Tillner-Roth R., Friend D.G.: J. Phys. Chem. Ref. Data 27, 63 (1998)

    ADS  Google Scholar 

  29. Kiselev S.B., Rainwater J.C.: Fluid Phase Equilib. 141, 129 (1997)

    Article  Google Scholar 

  30. J.C. Rainwater, R. Tillner–Roth, in Proceeding 13th IAPWS Conference, Steam, Water, and Hydrothermal Systems: Physics and Chemistry Meeting the Needs of Industry, ed. by P.R. Tremaine, P.G. Hill, D.E. Irish, P.V. Balakrishnan (NRC Research Press, Ottawa, 2000), pp. 110–117

  31. Peters R., Keller J.U.: DKV-Tagungsber 2, 183 (1993)

    Google Scholar 

  32. Smolen T.M., Manley D.B., Poling B.E.: J. Chem. Eng. Data 36, 202 (1991)

    Article  Google Scholar 

  33. Huang H.: Fluid Phase Equilib. 58, 93 (1990)

    Article  Google Scholar 

  34. Duan Z., Moller N., Weare J.H.: J. Solut. Chem. 25, 43 (1996)

    Article  Google Scholar 

  35. Abovsky V.: Fluid Phase Equilib. 116, 170 (1996)

    Article  Google Scholar 

  36. Moshfeghian M., Shariat A., Maddox R.N.: Fluid Phase Equilib. 80, 33 (1992)

    Article  Google Scholar 

  37. Friend D.G., Olson A.L., Nowarski A.: Int. J. Thermophys. 19, 1133 (1998)

    Article  Google Scholar 

  38. Y. Ikegami, T. Nishida, M. Uto, H. Uehara, in Proceedings 13th Japan Symposium Thermophysical Properties (Tokyo, 1992), p. 213

  39. Paték J., Klomfar J.: Int. J. Refrig. 18, 228 (1995)

    Article  Google Scholar 

  40. Enick R.M., Donahey G.P., Holsinger M.: Ind. Eng. Chem. Res. 37, 1644 (1998)

    Article  Google Scholar 

  41. K. Thomsen, P. Rasmussen, in Proceedings 13th IAPWS Conference, Steam, Water, and Hydrothermal Systems: Physics and Chemistry Meeting the Needs of Industry, ed. by P.R. Tremaine, P.G. Hill, D.E. Irish, P.V. Balakrishnan (NRC Research Press, Ottawa, 2000), pp. 118–125

  42. Suzuki J., Uematsu M.: Heat Transfer-Asian Res. 31, 320 (2002)

    Article  Google Scholar 

  43. Barhoumi M., Snoussi A., Ben Ezzine N., Mejbri K., Bellagi A.: Int. J. Refrig. 27, 271 (2004)

    Article  Google Scholar 

  44. Xu F., Goswami D.Y.: Energy 24, 525 (1999)

    Article  Google Scholar 

  45. Mejbri Kh., Bellagi A.: Int. J. Refrig. 29, 211 (2006)

    Article  Google Scholar 

  46. Rizvi S.S., Heidemann A.: J. Chem. Eng. Data 32, 183 (1987)

    Article  Google Scholar 

  47. Sassen C.L., van Kwartel R.A.C., van der Kool H.J., de Swaan Arons J.: J. Chem. Eng. Data 35, 140 (1990)

    Article  Google Scholar 

  48. Tsiklis D.S., Linshitts L.R., Gorinova N.P.: Russian J. Phys. Chem. 39, 2978 (1965)

    Google Scholar 

  49. Postma S.: Rec. Trav. Chim. 39, 515 (1920)

    Google Scholar 

  50. Sakabe A., Arai D., Miyamoto H., Uematsu M.: J. Chem. Thermodyn. 40, 1527 (2008)

    Article  Google Scholar 

  51. P.C. Gillespie, W.V. Wilding, G.M. Wilson, AIChE Symp. Ser. 256, 83 (1987–1989)

  52. Amirkhanov Kh.I., Stepanov G.V., Alibekov B.G.: Isochoric Heat Capacity of Water and Steam. Amerind Publishing Co., New Delhi (1974)

    Google Scholar 

  53. Amirkhanov Kh.I., Stepanov G.V., Abdulagatov I.M., Buyi O.A.: Isochoric Heat Capacity of Propyl and Isopropyl Alcohols. Dagestan Scientific Center of the Russian Academy of Sciences Publication, Makhachkala (1989)

    Google Scholar 

  54. Abdulagatov I.M., Polikhronidi N.G., Bruno T.J., Batyrova R.G., Stepanov G.V.: Fluid Phase Equilib. 263, 71 (2008)

    Article  Google Scholar 

  55. Kamilov I.K., Stepanov G.V., Abdulagatov I.M., Rasulov A.R., Milikhina E.M.: J. Chem. Eng. Data 46, 1556 (2001)

    Article  Google Scholar 

  56. Polikhronidi N.G., Abdulagatov I.M., Magee J.W., Stepanov G.V.: Int. J. Thermophys. 22, 189 (2001)

    Article  Google Scholar 

  57. Polikhronidi N.G., Abdulagatov I.M., Magee J.W., Stepanov G.V.: Int. J. Thermophys. 23, 745 (2002)

    Article  Google Scholar 

  58. Polikhronidi N.G., Abdulagatov I.M., Magee J.W., Stepanov G.V.: Int. J. Thermophys. 24, 405 (2003)

    Article  Google Scholar 

  59. Polikhronidi N.G., Abdulagatov I.M., Batyrova R.G.: Fluid Phase Equilib. 201, 269 (2002)

    Article  Google Scholar 

  60. Polikhronidi N.G., Batyrova R.G., Abdulagatov I.M.: Int. J. Thermophys. 21, 1073 (2000)

    Article  Google Scholar 

  61. Polikhronidi N.G., Batyrova R.G., Abdulagatov I.M., Magee J.W., Stepanov G.V.: J. Supercrit. Fluids 33, 209 (2004)

    Article  Google Scholar 

  62. Polikhronidi N.G., Batyrova R.G., Abdulagatov I.M.: Fluid Phase Equilib. 175, 153 (2000)

    Article  Google Scholar 

  63. Abdulagatov I.M., Kiselev S.B., Ely J.F., Polikhronidi N.G., Abdurashidova A.A.: Int. J. Thermophys. 26, 1327 (2005)

    Article  Google Scholar 

  64. Polikhronidi N.G., Stepanov G.V., Abdulagatov I.M., Batyrova R.G.: Thermochim. Acta 454, 99 (2007)

    Article  Google Scholar 

  65. Valyashko V.M., Abdulagatov I.M., Levelt- Sengers J.M.H.: J. Chem. Eng. Data 45, 1139 (2000)

    Article  Google Scholar 

  66. Sengers J.V., Levelt Sengers J.M.H.: Ann. Rev. Phys. Chem. 37, 189 (1986)

    Article  ADS  Google Scholar 

  67. Rowlinson J., Swinton F.L.: Liquids and Liquid Mixtures, 3rd edn. Butterworths, London (1982)

    Google Scholar 

  68. Ya.R. Chashkin, V.A. Smirnov, A.V. Voronel, Thermophysical Properties of Substances and Materials, vol. 2 (GSSSD, Moscow, 1970), p. 139

  69. A.V. Voronel, in Phase Transitions and Critical Phenomena, ed. by C. Domb, M.S. Green, vol. 5 (Academic Press, London, 1974), p. 343

  70. Wagner W., Pruß A.: J. Phys. Chem. Ref. Data 31, 387 (2002)

    Article  ADS  Google Scholar 

  71. J.M.H. Levelt Sengers, J. Straub, K. Watanabe, P.G. Hill, J. Phys. Chem. Ref. Data 14, 193 (1985). The Revised Values, on ITS-90, can be found in Physical Chemistry of Aqueous Systems, ed. by H.J. White Jr., J.V. Sengers, D.B. Neumann, J.C. Bellows (Begell House, New York, 1995), pp. A101–A102 (Appendix)

  72. Teja A.S., Anselme M.J.: AIChE Symp. Ser. 86, 115 (1990)

    Google Scholar 

  73. Chirico R.D., Steele W.V.: Ind. Eng. Chem. Res. 33, 157 (1994)

    Article  Google Scholar 

  74. Roof J.G.: J. Chem. Eng. Data 15, 301 (1970)

    Article  Google Scholar 

  75. Ratzsch M.T., Strauch G.: Z. Phys. Chem. (Leipzig) 249, 243 (1972)

    Google Scholar 

  76. Tillner-Roth R., Harms-Watzenberg F., Baehr H.D.: DKV-Tagungsbericht 20, 167 (1993)

    Google Scholar 

  77. Baehr H.D., Tillner-Roth R.: Thermodynamic Properties of Environmentally Acceptable Refrigerants; Equations of State and Tables for Ammonia, R22, R134a, R152a, and R123. Springer, Berlin (1994)

    Google Scholar 

  78. J.M.H. Levelt Sengers, in Supercritical Fluids: Fundamentals for Applications, ed. by E.Kiran, J.M.H. Levelt Sengers (Kluwer, Dordrecht, 1994), pp. 3–38

  79. Levelt Sengers J.M.H.: J. Supercrit. Fluids 4, 215 (1991)

    Article  Google Scholar 

  80. J.M.H. Levelt Sengers, in Supercritical Fluid Technology, ed. by J.F. Ely, T.J. Bruno (CRC Press, Boca Raton, FL, 1991), pp. 1–56

  81. Levelt Sengers J.M.H., Morrison G., Nielson G., Chang R.F., Everhart C.M.: Int. J. Thermophys. 7, 231 (1986)

    Article  Google Scholar 

  82. Chialvo A.A., Cummings P.T.: AIChE J. 40, 1558 (1994)

    Article  Google Scholar 

  83. Debenedetti P.G., Mohamed R.S.: J. Chem. Phys. 90, 4528 (1989)

    Article  ADS  Google Scholar 

  84. Japas M.L., Alvarez J.L., Gutkowski K., Fernández-Prini R.: J. Chem. Thermodyn. 30, 1603 (1998)

    Article  Google Scholar 

  85. Alvarez J.L., Fernandez-Prini R., Japas M.L.: Ind. Eng. Chem. Res. 39, 3625 (2000)

    Article  Google Scholar 

  86. Chang R.F., Morrison G., Levelt Sengers J.M.H.: J. Phys. Chem. 88, 3389 (1984)

    Article  Google Scholar 

  87. M.A. Anisimov, J.V. Sengers, J.M.H. Levelt Sengers, in The Physical and Chemical Properties of Aqueous Systems at Elevated Temperatures and Pressures: Water, Steam and Hydrothermal Solutions, ed. by D.A. Palmer, R. Fernadez-Prini, A.H. Harvey (Elsevier, Amsterdam, 2004), pp. 29–71

  88. Chang R.F., Levelt Sengers J.M.H.: J. Phys. Chem. 90, 5921 (1986)

    Article  Google Scholar 

  89. O’Connell J.P., Sharygin A.V., Wood R.H.: Ind. Eng. Chem. Res. 35, 2808 (1996)

    Article  Google Scholar 

  90. Chimowitz E.H., Afrane G.: Fluid Phase Equilib. 120, 167 (1996)

    Article  Google Scholar 

  91. Wheeler J.C.: Ber. Bunsenges. Phys. Chem. 76, 308 (1972)

    Google Scholar 

  92. Khazanova N.E., Sominskaya E.E.: Russ. J. Phys. Chem. 45, 1485 (1971)

    Google Scholar 

  93. van Wasen U., Swaid I., Schneider G.M.: Angew. Chem. Int. Ed. Eng. 19, 575 (1980)

    Article  Google Scholar 

  94. Fernández-Prini R., Japas M.L.: Chem. Soc. Rev. 23, 155 (1994)

    Article  Google Scholar 

  95. Harvey A.H.: J. Phys. Chem. 94, 8403 (1990)

    Article  Google Scholar 

  96. Japas M.L., Fernandez-Pirini R., Horita J., Wesolowski D.J.: J. Phys. Chem. 99, 5171 (1995)

    Article  Google Scholar 

  97. Chialvo A.A., Cummings P.T.: Mol. Phys. 84, 41 (1995)

    Article  ADS  Google Scholar 

  98. A.A. Chialvo, in Fluctuation Theory of Mixtures, ed. by E. Matteoli, G.A. Mansoori (Taylor and Francis, New York, 1990), p. 131

  99. Chialvo A.A.: J. Phys. Chem. 95, 6683 (1991)

    Article  Google Scholar 

  100. O’Connell J.P., Hu Y., Marshall K.A.: Fluid Phase Equilib. 158, 583 (1999)

    Article  Google Scholar 

  101. H.D. Cochran, L.L. Lee, D.M. Pfund, in Fluctuation Theory of Mixtures, ed. by E. Matteoli, G.A. Manssori (Taylor and Francis, New York, 1990), p. 69

  102. E.Z. Hamod, G.A. Manssori, in Fluctuation Theory of Mixtures, ed. by E. Matteoli, G.A. Mansoori (Taylor and Francis, New York, 1990), p. 95

  103. Krichevskii I.R.: Russ. J. Phys. Chem. 41, 1332 (1967)

    Google Scholar 

  104. J.M.H. Levelt-Sengers, in Physical Chemistry of Aqueous Systems. Proceeding 12th International Conference Properties of Water and Steam, ed. by H.J. White, J.V. Sengers, D.B. Neumann, J.C. Bellows (Begell House, New York, 1995), pp. A143–149

  105. Anisimov M.A.: Critical Phenomena in Liquids and Liquid Crystals. Gordon and Breach, Philadelphia (1991)

    Google Scholar 

  106. Anisimov M.A., Gorodezkii E.E., Kulikov V.D., Sengers J.V.: Phys. Rev. E. 51, 1199 (1995)

    Article  ADS  Google Scholar 

  107. Anisimov M.A., Gorodezkii E.E., Kulikov V.D., Povopdyrev A.A., Sengers J.V.: Phys. A 220, 277 (1995)

    Article  Google Scholar 

  108. M.A. Anisimov, J.V. Sengers, in Equations of State for Fluids and Fluids Mixtures, ed. by J.V. Sengers, R.F. Kayser, C.J. Peters, H.J. White (Elsevier, Amsterdam, 2000), p. 381

  109. Fisher M.E.: Phys. Rev. B 176, 257 (1968)

    Article  ADS  Google Scholar 

  110. M.A. Anisimov, A.A. Povodyrev, J.P. Roseli, J.V. Sengers, S.B. Kiselev, D.F. Friend, in Proceedings 13th International Conference Properties of Water and Steam ed. by P.R. Tremaine, P.G. Hill, D.E. Irish, P.V. Balakrishnan (NRC Research Press, Ottawa, 2000), pp. 339–346

  111. Cummings P.T., Chialvo A.A.: Chem. Eng. Sci. 49, 2735 (1994)

    Article  Google Scholar 

  112. Debenedetti P.G., Kumar S.K.: AIChE J. 34, 645 (1984)

    Article  Google Scholar 

  113. Hnedkovsky L., Wood R.H., Majer V.: J. Chem. Thermodyn. 28, 575 (1995)

    Google Scholar 

  114. Brelvi S.W., O’Connell J.P.: AIChE J. 18, 1239 (1972)

    Article  Google Scholar 

  115. Mcguigan D.B., Monson P.A.: Fluid Phase Equilib. 57, 227 (1990)

    Article  Google Scholar 

  116. Kiselev S.B., Friend D.G.: Fluid Phase Equilib. 155, 33 (1999)

    Article  ADS  Google Scholar 

  117. Plyasunov A.V., Shock E.L.: J. Supercrit. Fluids 20, 91 (2001)

    Article  Google Scholar 

  118. Plyasunov A.V., Shock E.L.: Geochim. Cosmochim. Acta 67, 4981 (2003)

    Article  ADS  Google Scholar 

  119. Alvarez J., Corti H.R., Fernandez-Prini R., Japas M.L.: Geochim. Cosmochim. Acta 58, 2789 (1994)

    Article  ADS  Google Scholar 

  120. Abdulagatov I.M., Dadashev M.N., Saidalhmedova M.B.: Russ. Chem. Chem. Product. 1-2, 30 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Abdulagatov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polikhronidi, N.G., Abdulagatov, I.M., Batyrova, R.G. et al. Experimental Study of the Critical Behavior of the Isochoric Heat Capacity of Aqueous Ammonia Mixture. Int J Thermophys 30, 737–781 (2009). https://doi.org/10.1007/s10765-009-0602-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-009-0602-6

Keywords

Navigation