Skip to main content
Log in

Experimental Study of the Thermodynamic Properties of Diethyl Ether (DEE) at Saturation

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The isochoric heat capacities \({({C_{V1}^{\prime}} ,{C_{V1}^{\prime\prime}},{C_{V2}^{\prime}},{C_{V2}^{\prime\prime}})}\), saturation densities (\({\rho _{\rm S}^{\prime}}\) and \(({\rho_{\rm S}^{\prime\prime})}\)), vapor pressures (P S), thermal-pressure coefficients \({\gamma_V=\left({\partial P/\partial T}\right)_V}\), and first temperature derivatives of the vapor pressure γ S = (dP S/dT) of diethyl ether (DEE) on the liquid–gas coexistence curve near the critical point have been measured with a high-temperature and high-pressure nearly constant-volume adiabatic piezo-calorimeter. The measurements of \({({C_{V1}^{\prime}} ,{C_{V1}^{\prime\prime}},{C_{V2}^{\prime}},{C_{V2}^{\prime\prime}})}\) were made in the liquid and vapor one- and two-phase regions along the coexistence curve. The calorimeter was additionally supplied with a calibrated extensometer to accurately and simultaneously measure the PVTC V VT, and thermal-pressure coefficient, γ V , along the saturation curve. The measurements were carried out in the temperature range from 416 K to 466.845 K (the critical temperature) for 17 liquid and vapor densities from 212.6 kg · m−3 to 534.6 kg · m−3. The quasi-static thermo- (reading of PRT, Tτ plot) and baro-gram (readings of the tensotransducer, Pτ plot) techniques were used to accurately measure the phase-transition parameters (P S ,ρ S ,T S) and γ V . The total experimental uncertainty of density (ρ S), pressure (P S), temperature (T S), isochoric heat capacities \({({C_{V1}^{\prime}} ,{C_{V1}^{\prime\prime}},{C_{V2}^{\prime}},{C_{V2}^{\prime\prime}})}\), and thermal-pressure coefficient, γ V , were estimated to be 0.02 % to 0.05 %, 0.05 %, 15 mK, 2 % to 3 %, and 0.12 % to 1.5 %, respectively. The measured values of saturated caloric \({({C_{V1}^{\prime}} ,{C_{V1}^{\prime\prime}},{C_{V2}^{\prime}},{C_{V2}^{\prime\prime}})}\) and saturated thermal (P S, ρ S, T S) properties were used to calculate other derived thermodynamic properties C P C SWK T P int, ΔH vap, and \({\left({\partial V/\partial T}\right)_P^{\prime}}\) of DEE near the critical point. The second temperature derivatives of the vapor pressure, (d2 P S/dT 2), and chemical potential, (d2 μ/dT 2), were also calculated directly from the measured one- and two-phase liquid and vapor isochoric heat capacities \({({C_{V1}^{\prime}} ,{C_{V1}^{\prime\prime}},{C_{V2}^{\prime}},{C_{V2}^{\prime\prime}})}\) near the critical point. The derived values of (d2 P S/dT 2) from calorimetric measurements were compared with values calculated from vapor–pressure equations. The measured and derived thermodynamic properties of DEE near the critical point were interpreted in terms of the “complete scaling” theory of critical phenomena. In particular, the effect of a Yang–Yang anomaly of strength R μ on the coexistence-curve diameter behavior near the critical point was studied. Extended scaling-type equations for the measured properties P S (T), ρ S (T), and \({({C_{V1}^{\prime}} ,{C_{V1}^{\prime\prime}},{C_{V2}^{\prime}},{C_{V2}^{\prime\prime}})}\) as a function of temperature were developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rezanova E.N., Kammerer K., Lichtenthaler R.N.: J. Chem. Eng. Data 45, 124 (2000)

    Article  Google Scholar 

  2. Zannis T.C., Hountalas D.T.: Energy Fuels 18, 659 (2004)

    Article  Google Scholar 

  3. Dogu T., Varisli D.: Turk. J. Chem. 31, 551 (2007)

    Google Scholar 

  4. Olah G.A., Goeppert A., Prakash G.K.S.: Beyond Oil and Gas: The Methanol Economy. Weinheim, Wiley-VCH (2006)

    Google Scholar 

  5. S.A. Afrillya, Ya. Mulyasih, I. Hastiawan, in Proceedings of the International Seminar on Chemistry 2008 (Jatinangor, Indonesia, 2008), pp. 186–190

  6. Reza J.M., Gonzalez C., Bertolaza M.A., Ruiz A.: Fluid Phase Equilib. 156, 89 (1999)

    Article  Google Scholar 

  7. Gmehling J., Onken U., Schulte H.-W.: J. Chem. Eng. Data 25, 29 (1980)

    Article  Google Scholar 

  8. Fuangfoo S., Kersting M., Viswanath D.S.: J. Chem. Eng. Data 44, 405 (1999)

    Article  Google Scholar 

  9. Strothmann B., Noll O., Fischer K., Gmehling J.: J. Chem. Eng. Data 44, 379 (1999)

    Article  Google Scholar 

  10. Lepori L., Matteoli E., Bernazzani L., Ceccanti N., Conti G., Gianni P., Mollica V., Tine M.R.: Phys. Chem. Chem. Phys. 2, 4837 (2000)

    Article  Google Scholar 

  11. Savaroglu G., Aral E.: Pramana 66, 435 (2006)

    Article  ADS  Google Scholar 

  12. Missopolinou D., Panayiotou C.: Fluid Phase Equilib. 156, 57 (1999)

    Article  Google Scholar 

  13. Canosa J., Rodriguez A., Tojo J.: Fluid Phase Equilib. 156, 57 (1999)

    Article  Google Scholar 

  14. Meng X., Zheng P., Wu J., Liu Z.: Fluid Phase Equilib. 271, 1 (2008)

    Article  Google Scholar 

  15. Bi Sh., Zhao G., Wu J.: J. Chem. Eng. Data 55, 1523 (2010)

    Article  Google Scholar 

  16. Daubert T.E., Danner R.P.: Physical and Thermodynamic Properties of Pure Chemicals. Data Compilation: Part 1: DIPPR. The Pennsylvania State University, University Park, PA; Hemisphere, Washington, DC (1991)

    Google Scholar 

  17. Kay W.B., Donham W.E.: Chem. Eng. Sci. 4, 1 (1955)

    Article  Google Scholar 

  18. Taylor R.S., Smith L.B.: J. Am. Chem. Soc. 44, 2450 (1922)

    Article  Google Scholar 

  19. Young S.: Sci. Proc. R. Dublin Soc. 12, 374 (1910)

    Google Scholar 

  20. Zawisza A.C.: Bull. Acad. Pol. Sci., Ser. Sci. Chim. 15, 191 (1967)

    Google Scholar 

  21. Rowley J.R., Wilding W.V., Oscarson J.L., Rowley R.L.: DIADEM, DIPPR Information and Data Evaluation Manager:4.2.0. Brigham Young University, Provo, UT (2010)

    Google Scholar 

  22. Spencer C.F., Adler S.B.: J. Chem. Eng. Data 23, 82 (1978)

    Article  Google Scholar 

  23. Timmermans J.: Physical—Chemical Constants of Pure Organic Compounds. Interscience, New York (1950)

    Google Scholar 

  24. Joffe J., Zudkevitch D.: AIChE Symp. Ser. 70, 22 (1974)

    Google Scholar 

  25. Hales J.L., Gundry A.A., Ellender J.H.: J. Chem. Thermodyn. 15, 21 (1983)

    Article  Google Scholar 

  26. Ambrose D., Sprake C.H.S., Townsend R.: J. Chem. Thermodyn. 4, 247 (1972)

    Article  Google Scholar 

  27. Horstmann S., Gardeler H., Bolts R., Rarey J., Gmehling J.: J. Chem. Eng. Data 44, 383 (1999)

    Article  Google Scholar 

  28. M. Frenkel, R. Chirico, V. Diky, C.D. Muzny, A. Kazakov, J.W. Magee, I.M. Abdulagatov, J.W. Kang, NIST ThermoDataEngine, NIST Standard Reference Database 103b—Pure Compound, Binary Mixtures, and Chemical Reactions, version 5.0 (National Institute Standards and Technology, Boulder, CO; Gaithersburg, MD, 2010)

  29. Ji W., Lempe D.A.: Fluid Phase Equilib. 147, 85 (1998)

    Article  Google Scholar 

  30. Kudchadker A.P., Alani G.H., Zwolinski B.J.: Chem. Rev. 68, 659 (1968)

    Article  Google Scholar 

  31. Schröer E.: Z. Phys. Chem. Abt. A 140, 241 (1929)

    Google Scholar 

  32. Schröer E.: Z. Phys. Chem. Abt. A 140, 379 (1929)

    Google Scholar 

  33. Kobe K.A., Ravicz A.E., Vohra S.P.: J. Chem. Eng. Data 1, 50 (1956)

    Article  Google Scholar 

  34. S. Young, Proc. Soc. Dublin N.S. 12, 874 (1909–1910)

    Google Scholar 

  35. Fischer R., Reichel T.: Mikrochem. Ver. Mikrochim. Acta 31, 102 (1943)

    Article  Google Scholar 

  36. Rätzsch M.T.: Z. Phys. Chem. Leipzig 243, 212 (1970)

    Google Scholar 

  37. Kudchadker A.P., Ambrose D., Tsonopoulos C.: J. Chem. Eng. Data 46, 457 (2001)

    Article  Google Scholar 

  38. Hofman T., González J., Casanova C.: Fluid Phase Equilib. 156, 3 (1999)

    Article  Google Scholar 

  39. Amirkhanov Kh.I., Stepanov G.V., Alibekov B.G.: Isochoric Heat Capacity of Water and Steam. Amerind Publishing Company, New Delhi (1974)

    Google Scholar 

  40. Amirkhanov Kh.I., Stepanov G.V., Abdulagatov I.M., Buyi O.A.: Isochoric Heat Capacity of Propyl and Isopropyl Alcohols. Dagestan Scientific Center of the Russian Academy of Sciences Publ, Makhachkala (1989)

    Google Scholar 

  41. Abdulagatov I.M., Polikhronidi N.G., Bruno T.J., Batyrova R.G., Stepanov G.V.: Fluid Phase Equilib. 263, 71 (2008)

    Article  Google Scholar 

  42. Kamilov I.K., Stepanov G.V., Abdulagatov I.M., Rasulov A.R., Milikhina E.M.: J. Chem. Eng. Data 46, 1556 (2001)

    Article  Google Scholar 

  43. Polikhronidi N.G., Abdulagatov I.M., Magee J.W., Stepanov G.V.: Int. J. Thermophys. 22, 189 (2001)

    Article  Google Scholar 

  44. Polikhronidi N.G., Abdulagatov I.M., Magee J.W., Stepanov G.V.: Int. J. Thermophys. 23, 745 (2002)

    Article  Google Scholar 

  45. Polikhronidi N.G., Abdulagatov I.M., Magee J.W., Stepanov G.V.: Int. J. Thermophys. 24, 405 (2003)

    Article  Google Scholar 

  46. Polikhronidi N.G., Abdulagatov I.M., Batyrova R.G.: Fluid Phase Equilib. 201, 269 (2002)

    Article  Google Scholar 

  47. Polikhronidi N.G., Batyrova R.G., Abdulagatov I.M.: Int. J. Thermophys. 21, 1073 (2000)

    Article  Google Scholar 

  48. Polikhronidi N.G., Batyrova R.G., Abdulagatov I.M., Magee J.W., Stepanov G.V.: J. Supercrit. Fluids 33, 209 (2004)

    Article  Google Scholar 

  49. Polikhronidi N.G., Batyrova R.G., Abdulagatov I.M.: Fluid Phase Equilib. 175, 153 (2000)

    Article  Google Scholar 

  50. Abdulagatov I.M., Kiselev S.B., Ely J.F., Polikhronidi N.G., Abdurashidova A.A.: Int. J. Thermophys. 26, 1327 (2005)

    Article  ADS  Google Scholar 

  51. Polikhronidi N.G., Stepanov G.V., Abdulagatov I.M., Batyrova R.G.: Thermochim. Acta 454, 99 (2007)

    Article  Google Scholar 

  52. Valyashko V.M., Abdulagatov I.M., Levelt-Sengers J.M.H.: J. Chem. Eng. Data 45, 1139 (2000)

    Article  Google Scholar 

  53. Polikhronidi N.G., Abdulagatov I.M., Batyrova R.G., Stepanov G.V.: Int. J. Thermophys. 30, 737 (2009)

    Article  ADS  Google Scholar 

  54. Polikhronidi N.G., Abdulagatov I.M., Batyrova R.G., Stepanov G.V.: Int. J. Refrig. 32, 1897 (2009)

    Article  Google Scholar 

  55. Sengers J.V., Levelt Sengers J.M.H.: Ann. Rev. Phys. Chem. 37, 189 (1986)

    Article  ADS  Google Scholar 

  56. Rowlinson J., Swinton F.L.: Liquids and Liquid Mixtures, 3rd edn. Butterworths, London (1982)

    Google Scholar 

  57. Driver G.R., Williamson A.G.: J. Chem. Eng. Data 17, 65 (1972)

    Article  Google Scholar 

  58. Ramsay W., Young S.: Philos. Trans. R. Soc. Lond. A 178, 57 (1887)

    Article  ADS  Google Scholar 

  59. Louder E.A., Briggs T.R., Browne A.W.: Ind. Eng. Chem. 16, 932 (1924)

    Article  Google Scholar 

  60. Fuangfoo S., Kersting M., Viswanath D.S.: J. Chem. Eng. Data 44, 405 (1999)

    Article  Google Scholar 

  61. Regnault H.V.: Mem. Acad. Sci. Paris 26, 335 (1862)

    Google Scholar 

  62. Amireche-Ziar F., Boukais-Belaribi G.: Fluid Phase Equilib. 268, 39 (2008)

    Article  Google Scholar 

  63. Neiman M.B., Demikhovskaya S.Z.: Zh. Obshch. Khim. 19, 593 (1949)

    Google Scholar 

  64. Joukovsky N.I.: Bull. Soc. Chim. Belg. 43, 397 (1934)

    Google Scholar 

  65. Drucker C., Jimeno E., Kangro W.: Z. Phys. Chem. Stoechiom. Verwandtschaftsl. 90, 513 (1915)

    Google Scholar 

  66. Wollaston W.H.: Philos. Trans. R. Soc. Lond. 108, 338 (1818)

    Article  Google Scholar 

  67. Ure A.: Adm. Philos. Mag. 53, 38 (1818)

    Google Scholar 

  68. Kobe K.A., Lynn R.E.: Chem. Rev. 52, 117 (1953)

    Article  Google Scholar 

  69. M.E. Fisher, in Critical Phenomena, Lectures Notes in Physics, ed. by F.J.W. Hahne, vol. 186, (Springer, Berlin, 1988)

  70. J.V. Sengers, J.M.H. Levelt Sengers, in Progress in Liquid Physics, ed. by C.A. Croxton (Wiley, New York, 1978), p. 103

  71. M.A. Anisimov, J.V. Sengers, in Equations of State for Fluids and Fluid Mixtures, ed. by J.V. Sengers, R.F. Kayser, C.J. Peters, H.J. White Jr., vol. V (Elsevier, Amsterdam, 2000), pp. 381–434

  72. Anisimov M.A.: Critical Phenomena in Liquids and Liquid Crystals. Gordon and Breach, Philadelphia (1991)

    Google Scholar 

  73. Wegner F.J.: Phys. Rev. B 5, 4529 (1972)

    Article  ADS  Google Scholar 

  74. Ley-Koo M., Green M.S.: Phys. Rev. A 23, 2650 (1981)

    Article  ADS  Google Scholar 

  75. Saul D.M., Wortis M., Jasnow D.: Phys. Rev. B 11, 2571 (1975)

    Article  ADS  Google Scholar 

  76. Camp W.J., Van Dyke J.P.: Phys. Rev. B 11, 2579 (1975)

    Article  ADS  Google Scholar 

  77. Fisher M.E., Zinn S.-Y., Upton P.J.: Phys. Rev. B 59, 14533 (1999)

    Article  ADS  Google Scholar 

  78. Guida R., Zinn-Justin J.: J. Phys. A: Math. Gen. 31, 8103 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  79. Yang C.N., Yang C.P.: Phys. Rev. Lett. 13, 303 (1969)

    Article  ADS  Google Scholar 

  80. Fisher M.E., Orkoulas G.: Phys. Rev. Lett. 85, 696 (2000)

    Article  ADS  Google Scholar 

  81. Orkoulas G., Fisher M.E., Ustün C.: J. Chem. Phys. 113, 7530 (2000)

    Article  ADS  Google Scholar 

  82. Polikhronidi N.G., Abdulagatov I.M., Stepanov G.V., Batyrova R.G.: J. Supercrit. Fluids 43, 1 (2007)

    Article  Google Scholar 

  83. Abdulagatov A.I., Stepanov G.V., Abdulagatov I.M.: Fluid Phase Equilib. 209, 55 (2003)

    Article  Google Scholar 

  84. N.G. Polikhronidi, I.M. Abdulagatov, G.V. Stepanov, R.G. Batyrova, to be submitted to Fluid Phase Equilib.

  85. Hall K.R., Eubank P.T.: Ind. Eng. Chem. Fundam. 15, 323 (1976)

    Article  Google Scholar 

  86. Nicoll J.F.: Phys. Rev. A 24, 2203 (1981)

    Article  ADS  Google Scholar 

  87. Hensel F.: Adv. Phys. 44, 3 (1995)

    Article  ADS  Google Scholar 

  88. Mermin N.D.: Phys. Rev. Lett. 26, 169 (1971)

    Article  ADS  Google Scholar 

  89. Rehr J.J., Mermin N.D.: Phys. Rev. A 8, 472 (1973)

    Article  ADS  Google Scholar 

  90. Widom B., Rowlinson J.S.: J. Chem. Phys. 52, 1670 (1970)

    Article  ADS  Google Scholar 

  91. Anisimov M.A., Wang J.: Phys. Rev. Lett. 97, 025703 (2006)

    Article  ADS  Google Scholar 

  92. Wang J., Anisimov M.A.: Phys. Rev. E 75, 051107 (2007)

    Article  ADS  Google Scholar 

  93. Wilip J.: Eesti Vabariigi Tartu Ulik. Toim. A 6, 74 (1924)

    Google Scholar 

  94. Galitzine B., Wilip J.: Bull. Acad. Pet. 11, 117 (1901)

    Google Scholar 

  95. Bowles J., Lacey M., Mathanat C., Sowden C.J., Wormald C.J.: J. Chem. Thermodyn. 30, 939 (1998)

    Article  Google Scholar 

  96. Mi J.-G., Chen J., Gao G.-H., Fei W.-Y.: Fluid Phase Equilib. 201, 295 (2002)

    Article  Google Scholar 

  97. Abdulagatov I.M., Levina L.N., Zakaryaev Z.R., Mamchenkova O.N.: J. Chem. Thermodyn. 27, 1385 (1995)

    Article  Google Scholar 

  98. Abdulagatov I.M., Levina L.N., Zakaryaev Z.R., Mamchenkova O.N.: Fluid Phase Equilib. 127, 205 (1997)

    Article  Google Scholar 

  99. Skripov V.P., Sinitsyn E.N.: Zh. Fiz. Khim. 42, 309 (1968)

    Google Scholar 

  100. Stryjek R., Kreglewski A.: Bull. Acad. Pol. Sci., Ser. Sci. Chim. 13, 201 (1965)

    Google Scholar 

  101. Lie S.P., Young C.L.: Int. DATA Ser., Sel. Data Mix. Ser. A 1, 66 (1975)

    Google Scholar 

  102. Audant C.R.: Hebd. Seances Acad. Sci. 170, 1573 (1920)

    Google Scholar 

  103. Prins A., Scheffer F.E.C.: J. Phys. Chem. 84, 827 (1913)

    Google Scholar 

  104. H.C. Schamhardt, Thesis, Amsterdam, The Netherlands, 1908

  105. Travers M.W., Usher F.L.: Z. Phys. Chem. Stoechiom. Verwandtschaftsl. 57, 365 (1906)

    Google Scholar 

  106. Centerszwer M., Pakalneet A.: Z. Phys. Chem. Stoechiom. Verwandtschaftsl. 55, 303 (1906)

    Google Scholar 

  107. Centerszwer M.: Z. Phys. Chem. Stoechiom. Verwandtschaftsl. 49, 199 (1904)

    Google Scholar 

  108. Smits A.: Z. Phys. Chem. Stoechiom. Verwandtschaftsl. 52, 587 (1905)

    Google Scholar 

  109. Von Hirsch R.: Ann. Phys. (Leipzig) 1, 655 (1900)

    Google Scholar 

  110. de Vries E.C.: Arch. Neerl. Sci. Exactes Nat. 28, 215 (1895)

    Google Scholar 

  111. Battelli A.: Ann. Chim. Phys. 25, 38 (1892)

    Google Scholar 

  112. Schmidt G.C.: Justus Liebigs Ann. Chem. 266, 266 (1891)

    Article  Google Scholar 

  113. Ramsay W.: Proc. R. Soc. Lond. 31, 194 (1881)

    Google Scholar 

  114. Sajotschewsky W.: Beibl. Ann. Phys. 3, 741 (1879)

    Google Scholar 

  115. Scheffer F.E.C.: J. Physik. Chem. 84, 827 (1913)

    Google Scholar 

  116. Drion Ch.: Ann. Chim. Phys. Ser. 3(56), 221 (1859)

    Google Scholar 

  117. Ladenburg A.: Ber. Dtsch. Chem. Ges. 11, 818 (1878)

    Article  Google Scholar 

  118. de la Tour C.: Ann. Chim. Phys. Ser. 2(21), 178 (1822)

    Google Scholar 

  119. Strauss O.: Zh. Russ. Fiz. Khimii Obsh. 12, 207 (1880)

    Google Scholar 

  120. Eversheim P.: Ann. Phys. Berlin Ser. 4(8), 539 (1902)

    ADS  Google Scholar 

  121. Reid R.C., Prausnitz J.M., Poling B.E.: The Properties of Gases and Liquids, 4th edn. McGraw Hill, New York (1987)

    Google Scholar 

  122. Stull D.R.: Ind. Eng. Chem. 39, 517 (1947)

    Article  Google Scholar 

  123. D. Ambrose, R. Townsend, Natl. Phys. Lab. Rep. (1978)

  124. Timmermans J., Martin F.: J. Chim. Phys. Phys. Chim. Biol. 25, 411 (1928)

    Google Scholar 

  125. F. Schwers, Bull. Cl. Sci. Acad. R. Belg. 252 (1912)

  126. Schwers F.: J. Chim. Phys. Phys. Chim. Biol. 9, 15 (1911)

    Google Scholar 

  127. Faust O.: Z. Phys. Chem. Stoechiom. Verwandtschaftsl. 79, 97 (1912)

    Google Scholar 

  128. J.R. Rowley, W.V. wilding, J.L. Oscarsch, R.L. Rowley, DIADEM, Design Institute for Physical Property Data (DIPPR) Information and Data Evaluation Manager (Brigham Young University, Provo, UT, 2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Abdulagatov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polikhronidi, N.G., Abdulagatov, I.M., Batyrova, R.G. et al. Experimental Study of the Thermodynamic Properties of Diethyl Ether (DEE) at Saturation. Int J Thermophys 32, 559–595 (2011). https://doi.org/10.1007/s10765-011-0948-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-011-0948-4

Keywords

Navigation