Skip to main content
Log in

Phase Behavior of N2O and CO2 in Room-Temperature Ionic Liquids [bmim][Tf2N], [bmim][BF4], [bmim][N(CN)2], [bmim][Ac], [eam][NO3], and [bmim][SCN]

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The gas solubility of nitrous oxide (N2O) in room-temperature ionic liquids, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium dicyanamide, 1-butyl-3-methylimidazolium acetate, 1-butyl-3-methylimidazolium thiocyanate, and ethylammonium nitrate has been measured at isothermal conditions from about (283 to 348)K using a gravimetric microbalance. The observed pressure–temperature composition (PTx) data have been analyzed by use of a generic Redlich-Kwong equation-of-state (EOS) model, which has been successfully applied in our previous works. The interaction parameters have been determined using our measured vapor–liquid equilibrium data. Vapor–liquid–liquid equilibrium measurements have been made and validate EOS model predictions which suggest that these systems demonstrate Type III and Type V phase behavior, according to the classification of van Konynenburg and Scott. The global phase behavior of N2O has also been compared with both the measured data from this study and literature data for carbon dioxide (CO2) in each ionic liquid and Henry’s law constants are compared at room temperature (298.15 K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Solomon, S.D., Manning, Q.M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, A.M., Miller, H.L. (eds): Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  2. B. Anderson, K. Bartlett, S. Frolking, K. Hayhoe, J. Jenkins, W. Salas, Methane and Nitrous Oxide Emissions From Natural Sources. Report 430-R-10-001 (Office of Atmospheric Programs, United States Environmental Protection Agency, Washington, DC, April 2010)

  3. P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, R. Van Dorland, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. by S.D. Solomon, Q.M. Manning, Z. Chen, M. Marquis, K.B. Averyt, A.M. Tignor, H.L. Miller (Cambridge University Press, Cambridge, 2007)

  4. Pérez-Ramírez J., Kapteijn F., Schöffel K., Moulijn J.A.: Appl. Catal. B: Environ. 44, 117 (2003)

    Article  Google Scholar 

  5. Ramanathan V.: Ambio 27, 187 (1998)

    MathSciNet  Google Scholar 

  6. Kavanaugh M.: Atmos. Environ. 21, 463 (1987)

    Article  Google Scholar 

  7. http://www.epa.gov/nitrousoxide/sources.html

  8. Centi G., Generali P., dall’Olio L., Perathoner S.: Ind. Eng. Chem. Res. 39, 131 (2000)

    Article  Google Scholar 

  9. Anthony J.L., Anderson J.L., Maginn E.J., Brennecke J.F.: J. Phys. Chem. B 109, 6366 (2005)

    Article  Google Scholar 

  10. Revelli A.-L., Mutelet F., Jaubert J.-N.: J. Phys. Chem. B 114, 8199 (2010)

    Article  Google Scholar 

  11. Scott R.L., van Konynenburg P.H.: Discuss. Faraday Soc. 49, 87 (1970)

    Article  Google Scholar 

  12. van Konynenburg P.H., Scott R.L.: Philos. Trans. A 298, 495 (1980)

    Article  ADS  Google Scholar 

  13. Shiflett M.B., Niehaus A.M.S., Yokozeki A.: J. Phys. Chem. B 115, 3478 (2011)

    Article  Google Scholar 

  14. M.B. Shiflett, B.A. Elliott, A. Yokozeki, J. Sep. Sci. Tech. (2011) doi:10.1080/01496395.2011.627905

  15. Nicola G.D., Giuliani G., Polonara F.: J. Chem. Eng. Data 50, 656 (2005)

    Article  Google Scholar 

  16. Yokozeki A.: Int. J. Thermophys. 22, 1057 (2001)

    Article  Google Scholar 

  17. Yokozeki A.: Appl. Energy 84, 159 (2007)

    Article  Google Scholar 

  18. Shiflett M.B., Yokozeki A.: Ind. Eng. Chem. Res. 44, 4453 (2005)

    Article  Google Scholar 

  19. Yokozeki A., Shiflett M.B.: AIChE J. 52, 3952 (2006)

    Article  Google Scholar 

  20. Yokozeki A., Shiflett M.B.: Ind. Eng. Chem. Res. 46, 1605 (2006)

    Article  Google Scholar 

  21. Yokozeki A., Shiflett M.B.: Appl. Energy 84, 1258 (2007)

    Article  Google Scholar 

  22. Shiflett M.B., Yokozeki A.: J. Phys. Chem. B 111, 2070 (2007)

    Article  Google Scholar 

  23. Shiflett M.B., Yokozeki A.: J. Chem. Eng. Data 52, 2007 (2007)

    Article  Google Scholar 

  24. Shiflett M.B., Kasprzak D.J., Junk C.P., Yokozeki A.: J. Chem. Thermodyn. 40, 25 (2008)

    Article  Google Scholar 

  25. Yokozeki A., Shiflett M.B.: Ind. Eng. Chem. Res. 47, 8389 (2008)

    Article  Google Scholar 

  26. Yokozeki A., Shiflett M.B., Junk C.P., Greico L.M., Foo T.: J. Phys. Chem. B 112, 16654 (2008)

    Article  Google Scholar 

  27. M.B. Shiflett, A. Yokozeki, in Ionic Liquids: From Knowledge to Applications, ed. by N.V. Plechkova, R.D. Rogers, K.R. Seddon, ACS Symp. Ser., vol. 1030 (American Chemical Society, Washington, DC, 2009), pp. 21–42

  28. Shiflett M.B., Yokozeki A.: AIChE J. 52, 1205 (2006)

    Article  Google Scholar 

  29. Lee B.-C., Outcalt S.L.: J. Chem. Eng. Data 51, 892 (2006)

    Article  Google Scholar 

  30. Carvalho P.J., Álvarez V.H., Marrucho I.M., Aznar M., Coutinho J.A.P.: J. Supercrit. Fluids 50, 105 (2009)

    Article  Google Scholar 

  31. Shiflett M.B., Yokozeki A.: J. Phys. Chem. B 110, 14436 (2006)

    Article  Google Scholar 

  32. Shiflett M.B., Yokozeki A.: J. Chem. Eng. Data 51, 1931 (2006)

    Article  Google Scholar 

  33. Yokozeki A., Shiflett M.B.: Energy Fuels 23, 4701 (2009)

    Article  Google Scholar 

  34. Shiflett M.B., Yokozeki A.: Energy Fuels 24, 1001 (2010)

    Article  Google Scholar 

  35. Shiflett M.B., Yokozeki A.: Fluid Phase Equilib. 294, 105 (2010)

    Article  Google Scholar 

  36. Shiflett M.B., Niehaus A.M.S., Yokozeki A.: J. Chem. Eng. Data 55, 4785 (2010)

    Article  Google Scholar 

  37. Van Ness H.C., Abbott M.M.: Classical Thermodynamics of Nonelectrolyte Solutions. McGraw-Hill, New York (1982)

    Google Scholar 

  38. E.W. Lemmon, M.O. McLinden, M.L. Huber, REFPROP. version 8.0 (Standard Reference Data Program, National Institute of Standards and Technology, Gaithersburg, MD, 2008)

  39. Vetere A.: Chem. Eng. J. 49, 27 (1992)

    Article  Google Scholar 

  40. Acree W.E. Jr.: Thermodynamic Properties of Nonelectrolyte Solutions. Academic Press, New York (1984)

    Google Scholar 

  41. Denbigh K.: The Principles of Chemical Equilibrium. 3rd edn. Cambridge University Press, London (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark B. Shiflett.

Electronic Supplementary Material

The Below are the Electronic Supplementary Material.

ESM 1 (DOC 154 kb)

ESM 2 (PDF 106 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiflett, M.B., Niehaus, A.M.S., Elliott, B.A. et al. Phase Behavior of N2O and CO2 in Room-Temperature Ionic Liquids [bmim][Tf2N], [bmim][BF4], [bmim][N(CN)2], [bmim][Ac], [eam][NO3], and [bmim][SCN]. Int J Thermophys 33, 412–436 (2012). https://doi.org/10.1007/s10765-011-1150-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-011-1150-4

Keywords

Navigation