Skip to main content
Log in

Measurement of Binary Diffusion Coefficients for Neon–Argon Gas Mixtures Using a Loschmidt Cell Combined with Holographic Interferometry

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The paper reports on experimental binary diffusion coefficient data of neon–argon gas mixtures. Measurements were performed in the temperature range between 293.15 K and 333.15 K and for pressures between 1 bar and 10 bar over almost the whole composition range using a Loschmidt diffusion cell combined with holographic interferometry. The thermostated Loschmidt cell is divided into two half-cells, which can be separated and connected by a sliding plate. Prior to the measurements, two different pure gases are filled into the two half-cells. After starting the diffusion process, the temporal change of the partial molar densities, or rather of the refractive index of the gases, is detected in both half-cells using two holographic interferometers. With this apparatus, the temperature, pressure, and concentration dependence of the binary diffusion coefficient can be determined. The relative uncertainty of a diffusion measurement is between 0.4 % and 1.4 % depending on the pressure. The experimental data are compared with data from the literature and with new theoretical data based on quantum-mechanical ab initio calculations combined with the kinetic theory of gases. Due to a systematic error, the concentration dependence determined in the upper half-cell shows deviations from the theoretical values and from most of the literature data. The concentration, temperature, and pressure dependence obtained from the data from the lower half-cell, however, are in very good agreement with available data. The product of the binary gas diffusion coefficient and the molar density of the gas mixture shows no significant dependence on pressure for the studied neon–argon noble gas system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(A_\mathrm{R1}\) :

First refractivity virial coefficient of component 1 (\(\text{ m}^{3}\cdot \text{ mol}^{-1}\))

\(A_\mathrm{R2}\) :

First refractivity virial coefficient of component 2 (\(\text{ m}^{3}\cdot \text{ mol}^{-1}\))

\(B_{11}\) :

Second pressure virial coefficient of component 1 (\(\text{ m}^{3}\cdot \text{ mol}^{-1}\))

\(B_{22}\) :

Second pressure virial coefficient of component 2 (\(\text{ m}^{3}\cdot \text{ mol}^{-1}\))

\(B_{12}\) :

Mixed second pressure virial coefficient (\(\text{ m}^{3}\cdot \text{ mol}^{-1}\))

\(B_\mathrm{R11}\) :

Second refractivity virial coefficient of component 1 (\(\text{ m}^{6}\cdot \text{ mol}^{-2}\))

\(B_{\mathrm{R}22}\) :

Second refractivity virial coefficient of component 2 (\(\text{ m}^{6}\cdot \text{ mol}^{-2}\))

\(B_{\mathrm{R}12}\) :

Second refractivity virial coefficient of the mixture (\(\text{ m}^{6}\cdot \text{ mol}^{-2}\))

\(C_{111}\) :

Third pressure virial coefficient of component 1 (\(\text{ m}^{6}\cdot \text{ mol}^{-2}\))

\(C_{222}\) :

Third pressure virial coefficient of component 2 (\(\text{ m}^{6}\cdot \text{ mol}^{-2}\))

\(C_{112},\, C_{122}\) :

Mixed third pressure virial coefficients (\(\text{ m}^{6}\cdot \text{ mol}^{-2}\))

\(D_{12}\) :

Binary diffusion coefficient (\(\text{ m}^{2}\cdot \text{ s}^{-1}\))

\(k\) :

Order of interference fringes

\(L\) :

Height (m)

\(l\) :

Depth (m)

\(\Delta L_\mathrm{opt}(z,t)\) :

Optical path length difference (m)

\(\Delta n\) :

Refractive index difference

\(n_{1,0}\) :

Refractive index of component 1 prior to diffusion

\(n_{2,0}\) :

Refractive index of component 2 prior to diffusion

\(n_\mathrm{mix}\) :

Refractive index of the mixture

\(p\) :

Pressure (Pa)

\(T\) :

Temperature (K)

\(t\) :

Time (s)

\(x\) :

Mole fraction

\(x_{2}\) :

Mole fraction of component 2

\(z\) :

Local coordinate (m)

\(\lambda \) :

Wavelength (m)

\(\rho _{1}\) :

Partial molar density of component 1 (\(\text{ mol}\cdot \text{ m}^{-3}\))

\(\rho _{2}\) :

Partial molar density of component 2 (\(\text{ mol}\cdot \text{ m}^{-3}\))

\(\rho _{2,0}\) :

Molar density of component 2 prior to diffusion in lower half (\(\text{ mol}\cdot \text{ m}^{-3}\))

\(\rho _\mathrm{mix}\) :

Molar density of the mixture (\(\text{ mol}\cdot \text{ m}^{-3}\))

\(\tau \) :

Characteristic diffusion time (s)

References

  1. W.A. Wakeham, A. Nagashima, J.V. Sengers, in Measurement of the Transport Properties of Fluids, ed. by W.A. Wakeham, A. Nagashima, J.V. Sengers (Blackwell Scientific Publications, Oxford, 1991), p. 3

  2. S. Chapman, T.G. Cowling, The Mathematical Theory of Non-Uniform Gases, 3rd edn. (Cambridge University Press, London, 1970)

    Google Scholar 

  3. J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954)

    MATH  Google Scholar 

  4. H. Partridge, J.R. Stallcop, E. Levin, J. Chem. Phys. 115, 6471 (2001)

    Article  ADS  Google Scholar 

  5. T.R. Marrero, E.A. Mason, J. Phys. Chem. Ref. Data 1, 3 (1972)

    Article  ADS  Google Scholar 

  6. K. Kerl, M. Jescheck, Z. Phys. Chem. 97, 127 (1975)

    Article  Google Scholar 

  7. P.J. Dunlop, K.R. Harris, D.J. Young, in Determination of Thermodynamic Properties, ed. by B.W. Rossiter, R.C. Baetzold (Wiley, New York, 1992), p. 185

  8. D. Buttig, Bestimmung binärer Diffusionskoeffizienten in Gasmischungen mit einer Loschmidt-Zelle und holografischer Interferometrie, Dr.-Ing. Thesis (Universität Rostock, Rostock, 2010)

  9. J. Baranski, Bestimmung binärer Diffusionskoeffizienten von Gasen mit einer Loschmidt-Zelle und holografischer Interferometrie, Dr. rer. nat. Thesis (Universität Rostock, Rostock, 2002)

  10. D. Buttig, E. Vogel, E. Bich, E. Hassel, Meas. Sci. Technol. 22, 1 (2011)

    Article  Google Scholar 

  11. J. Crank, The Mathematics of Diffusion, 2nd edn. (Claredon Press, Oxford, 1956)

    MATH  Google Scholar 

  12. H. Becker, U. Grigull, Heat Mass Transf. 10, 233 (1977)

    Google Scholar 

  13. H.J. Achtermann, J.G. Hong, G. Magnus, R.A. Aziz, M.J. Slaman, J. Chem. Phys. 98, 2308 (1993)

    Article  ADS  Google Scholar 

  14. E. Vogel, B. Jäger, R. Hellmann, E. Bich, Mol. Phys. 108, 3335 (2010)

    Article  ADS  Google Scholar 

  15. E. Bich, R. Hellmann, E. Vogel, Mol. Phys. 106, 1107 (2008)

    Article  Google Scholar 

  16. B. Jäger, R. Hellmann, E. Bich, E. Vogel, J. Chem. Phys. 135, 084308 (2011)

    Article  ADS  Google Scholar 

  17. E. Bich, B. Jäger, R. Hellmann, Mol. Phys. (to be published)

  18. E.A. Mason, J. Chem. Phys. 27, 75 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  19. M. Kullnick, Interferometrische Untersuchung der Diffusion in binären Gemischen realer Gase mit einer Loschmidt-Diffusionsapparatur, Dr. rer. nat. Thesis (TU Braunschweig, Braunschweig, 2001)

  20. G.R. Staker, M.A. Yabsley, J.M. Symons, P.J. Dunlop, J. Chem. Soc. Faraday Trans. 1 70, 825 (1984)

    Google Scholar 

  21. I.R. Shankland, P.J. Dunlop, Physica 100 A, 64 (1980)

    ADS  Google Scholar 

  22. I.R. Shankland, P.J. Dunlop, Chem. Phys. Lett. 39, 557 (1976)

    Article  ADS  Google Scholar 

  23. K. Kerl, Über die Untersuchung der Diffusion binärer Gasgemische, Dr.-Ing. Thesis (TU Braunschweig, Braunschweig, 1968)

  24. W. Hogervorst, Physica 51, 59 (1971)

    Article  ADS  Google Scholar 

  25. C.J. Zwakhals, K.W. Reus, Physica 100 C, 231 (1980)

    Google Scholar 

  26. K. Kerl, U. Joswig, Z. Phys. Chem. 97, 139 (1975)

    Article  Google Scholar 

  27. A.P. Malinauskas, M.D. Silverman, J. Chem. Phys. 50, 3263 (1969)

    Article  ADS  Google Scholar 

  28. K. Schäfer, K. Schuhmann, Z. Elektrochem. 61, 246 (1957)

    Google Scholar 

  29. B.N. Srivastava, K.P. Srivastava, J. Chem. Phys. 30, 984 (1959)

    Article  ADS  Google Scholar 

  30. V.P.S. Nain, S.C. Saxena, Appl. Sci. Res. 23, 121 (1970)

    Article  Google Scholar 

  31. R.J.J. van Heijningen, J.P. Harpe, J.J.M. Beenakker, Physica 38, 1 (1968)

    Article  ADS  Google Scholar 

  32. J. Kestin, K. Knierim, E.A. Mason, B. Najafi, S.T. Ro, M. Waldman, J. Phys. Chem. Ref. Data 13, 229 (1984)

    Article  ADS  Google Scholar 

  33. P.S. Arora, H.L. Robjohns, P.J. Dunlop, Physica 95 A, 561 (1979)

    ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) by funding of the Erlangen Graduate School in Advanced Optical Technologies (SAOT) within the German Initiative for Excellence and via the project “diffusion coefficient” (grants FR 1709/10-1 and BI 1389/2-1). The authors thank the working group of Professor E. Vogel from the Institute of Chemistry at the University of Rostock for the transfer of and the introduction to the diffusion apparatus, which allowed the continuation of the experimental investigations in Erlangen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Fröba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kugler, T., Jäger, B., Bich, E. et al. Measurement of Binary Diffusion Coefficients for Neon–Argon Gas Mixtures Using a Loschmidt Cell Combined with Holographic Interferometry. Int J Thermophys 34, 47–63 (2013). https://doi.org/10.1007/s10765-012-1352-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-012-1352-4

Keywords

Navigation