Skip to main content

Advertisement

Log in

Measurement of the (p, \(\rho \), T) Properties for Pure Hydrocarbons at Temperatures up to 600 K and Pressures up to 200 MPa

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The data available for the thermodynamic properties of propane, \(n\)-butane, and isobutane at temperatures above 440 K are outdated and show significant discrepancies with each other. The ambiguity associated with these data could be limiting to the development of any understanding related to the effects of mixing of these substances with other materials such as \(\text{ CO}_{2}\), ammonia, and non-flammable or lower-flammable HFC refrigerants. In this study, the (p, \(\rho \), T) properties of propane, \(n\)-butane, and isobutane were measured at temperatures ranging from (360 to 600) K and pressures ranging from (50 to 200) MPa. Precise measurements were carried out using a metal-bellows variable volumometer with a thermostatted air bath. The expanded uncertainties \((k = 2)\) in the temperature, pressure, and density measurements were estimated to be \(<\)5 mK, 0.02 MPa, and 0.88 kg \(\cdot \) m\(^{-3}\) (\(T\le 423\) K, \(p<100\) MPa), 0.76 kg \(\cdot \) \(\text{ m}^{-3}\) (\(T\le 423\) K, \(p\ge 100\) MPa), 0.76 kg \(\cdot \) \(\text{ m}^{-3}\) (\(T>423\) K, \(p < 100\) MPa), and 2.94 kg \(\cdot \) \(\text{ m}^{-3}\) (\(T>423\) K, \(p \ge 100\) MPa), respectively. The data obtained throughout this study were systematically compared with the calculated values derived from the available equations of state. These models agree well with the measured data at higher temperatures up to 600 K, demonstrating their suitability for an effective and precise examination of the mixing effects of potential alternative mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Miyamoto, M. Uematsu, Int. J. Thermophys. 27, 1052 (2006)

    Article  ADS  Google Scholar 

  2. H. Miyamoto, M. Uematsu, J. Chem. Thermodyn. 39, 588 (2007)

    Article  Google Scholar 

  3. H. Miyamoto, M. Uematsu, J. Chem. Thermodyn. 40, 240 (2008)

    Article  Google Scholar 

  4. H. Miyamoto, M. Uematsu, J. Chem. Thermodyn. 38, 360 (2006)

    Article  Google Scholar 

  5. H. Miyamoto, K. Shigetoyo, M. Uematsu, J. Chem. Thermodyn. 39, 1423 (2007)

    Article  Google Scholar 

  6. E.W. Lemmon, M.O. McLinden, W. Wagner, J. Chem. Eng. Data 54, 3141 (2009)

    Article  Google Scholar 

  7. D. Bücker, W. Wagner, J. Phys. Chem. Ref. Data 35, 929 (2006)

    Article  ADS  Google Scholar 

  8. E.W. Lemmon, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.0 (Standard Reference Data Program, National Institute of Standards and Technology, Gaithersburg, MD, 2010).

  9. S. Muromachi, H. Miyamoto, M. Uematsu, J. Chem. Thermodyn. 40, 1594 (2008)

    Article  Google Scholar 

  10. H.H. Reamer, B.H. Sage, W.N. Lacey, Ind. Eng. Chem. 41, 482 (1949)

    Article  Google Scholar 

  11. P. Dittmar, F. Schulz, G. Strese, Chem. Eng. Technol. 34, 437 (1962)

    Google Scholar 

  12. R.H.P. Thomas, R.H. Harrison, J. Chem. Eng. Data 27, 1 (1982)

    Article  Google Scholar 

  13. H. Kratzke, S. Müller, J. Chem. Thermodyn. 16, 1157 (1984)

    Article  Google Scholar 

  14. G.C. Straty, A.M.F. Palavra, J. Res. Natl. Bur. Stand. 89, 375 (1984)

    Google Scholar 

  15. P. Claus, G. Schilling, R. Kleinrahm, W. Wagner, Internal Report (Ruhr-Universität Bochum, Wagner, 2002) (these data are also reported by Glos et al. [16])

  16. S. Glos, R. Kleinrahm, W. Wagner, J. Chem. Thermodyn. 36, 1037 (2004)

    Article  Google Scholar 

  17. M.O. McLinden, J. Chem. Eng. Data 54, 3181 (2009)

    Article  Google Scholar 

  18. J.A. Beattie, G.L. Simard, G.-J. Su, J. Am. Chem. Soc. 61, 26 (1939)

    Article  Google Scholar 

  19. W.B. Kay, Ind. Eng. Chem. 32, 358 (1940)

    Article  Google Scholar 

  20. R.H. Olds, H.H. Reamer, B.H. Sage, W.N. Lacey, Ind. Eng. Chem. 36, 282 (1944)

    Article  Google Scholar 

  21. B.H. Sage, W.N. Lacey, Ind. Eng. Chem. 30, 673 (1938)

    Article  Google Scholar 

  22. W.M. Morris, B.H. Sage, W.N. Lacey, Technical Pubication No. 1128 (American Institute of Mining and Metallurgical Engineers, New York, 1939)

  23. J.A. Beattie, S. Marple, D.G. Edwards, J. Chem. Phys. 18, 127 (1950)

    Article  ADS  Google Scholar 

  24. W. Wagner, A. Pruß, J. Phys. Chem. Ref. Data 31, 387 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by a Grant-in-Aid for Scientific Research Fund for 2008–2011 (Project No. 20686016) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Miyamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ito, T., Nagata, Y. & Miyamoto, H. Measurement of the (p, \(\rho \), T) Properties for Pure Hydrocarbons at Temperatures up to 600 K and Pressures up to 200 MPa. Int J Thermophys 35, 1636–1646 (2014). https://doi.org/10.1007/s10765-012-1383-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-012-1383-x

Keywords

Navigation